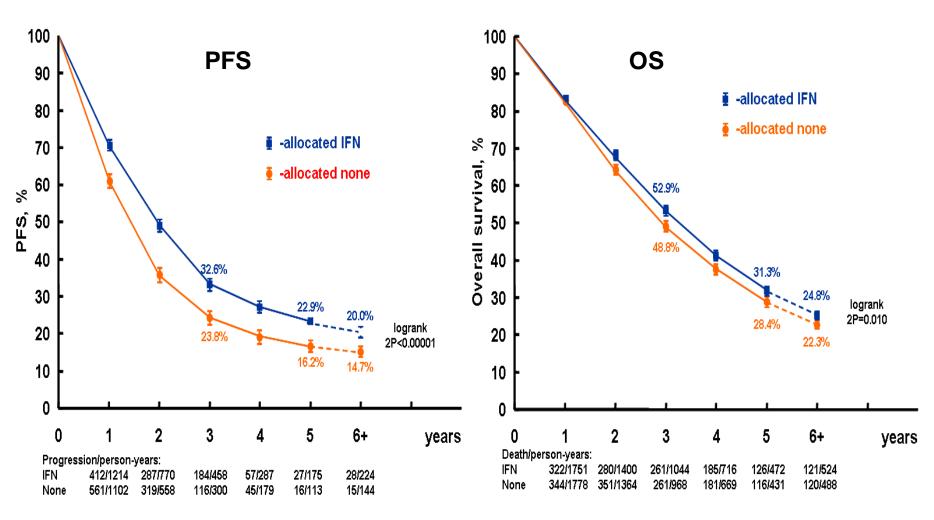
Maintenance Therapy MM


What are the appropriate study endpoints?

- PFS is certainly appropriate as a surrogate in RRMM to hasten market approval; Td vs D, Vd vs D, Rd vs D, DVD vs Vd
- Patients with multiply relapsed disease that have longer plateaus clearly translate to improved OS the endpoint of greatest interest.
- For newly diagnosed patients OS needs to be demonstrated MPV vs MP, MPT vs MP

Questions to Evaluate Maint. Trials

- In maintenance studies does PFS predict improved OS?
- Have these QOL studies been done?
- What fraction of patients on no maint get diarrhea, skin rashes DVT
- In patients that progress was the maintenance agent available to placebo patients-this is a key for study design
- Were induction arms identical in maint trial

Interferon *Meta-analysis of* >750 Patients--12 Trials

BJH 2001, 113, 1020-1034.

Thalidomide Maintenance after Conventional Chemotherapy (CC)

- **❖**No Trial comparing Thal vs no maintenance after the same Induction Therapy.
- **❖**The only Maintenance experience with Thal is provided by the 7 MP vs MPT trials:
 - 5 used Thal maintenance after MPT:
 OS benefit of the MPT arm: 1/5.
 - 2 did not use Thal maintenance after MPT:
 OS benefit of the MPT arm: 2/2.
 - Thal is not required to improve OS after MPT

Maintenance therapy in non-ASCT Pts

Maintenance versus no maintenance

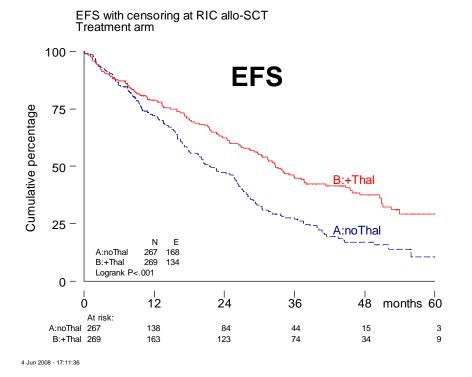
	N	CR + VGPR,	Med PFS, months	Med OS, months
GIMEMA ⁶ MPT vs MP	255	36 vs 12	22 vs 14	45 v 48
HOVON 49 ⁷ MPT vs MP	344	23 vs 8	33 vs 21	40 v 31
Nordic ⁸ MPT vs MP	363	6 vs 3*	15 vs 14	29 vs 32

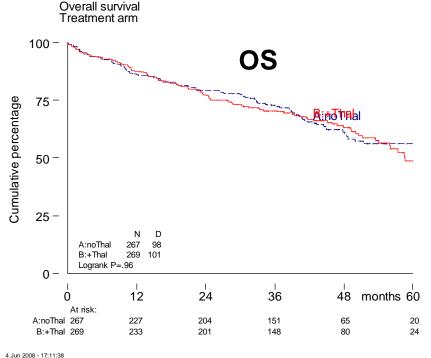
^{*} CR rate only.

Maintenance after ASCT with thali

	N	Initial	wainter	iance versus no main	ITE
	IN	dose, mg	FU __ mo	FFS or PFS	
Barlogie ¹	668	83% receiv	ed salvag	e thalidomide→	
Abn Cyto				•••••••••••••••••••••••••••••••••••••••	
Attal ²	597	62% receiv	ed salvag	e thalidomide→	
Spencer ³	243	54% receiv	ed salvag	e thalidomide→	
Morgan ⁴		100	38	~21 vs 15 m [†]	
Stewart ⁵	332	200 (+pred)	48	28 vs 17 m	
Lokhorst ⁶	536	50 (vs IFN)	52	34 vs 25 m	
Krishnan ⁷	366	200 (+dex)	36	3-yr 49 v 80%	

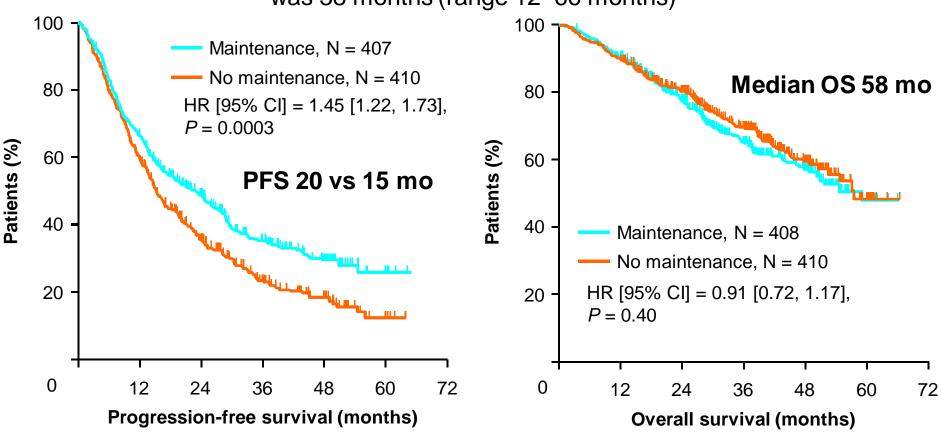
^{*} CR rate only. † Pooled ASCT and nonASCT patients


^{1.} Barlogie B, N Engl J Med. 2006;354:1021-30, updated Blood. 2008;112(8):3115-21. 2. Attal M, Blood. 2006;108:3289-94. 3. Spencer A, J Clin Oncol; 2009;27:1788-93. 4. Morgan GJ, ASH. 2010;abs 623. 5. Stewart ASH 2010, Abs 39; 6. Lokhorst Blood (2010); 115:1113-11207. Krishnan. ASH 2010;#41-


HOVON 50

Best response on protocol

	VAD+IFN	TAD+Ihal	р
≥PR	79 %	88%	0.005
≥VGPR	54 %	66%	0.005
≥CR	23 %	31%	0.04



Lokhorst Blood (2010); 115:1113-1120

Median fu is 52 months

PFS and OS according to maintenance randomization

Median follow-up from maintenance randomization was 38 months (range 12–66 months)

Thalidomide maintenance improves PFS with no OS advantage

Maintenance with Lenalidomide

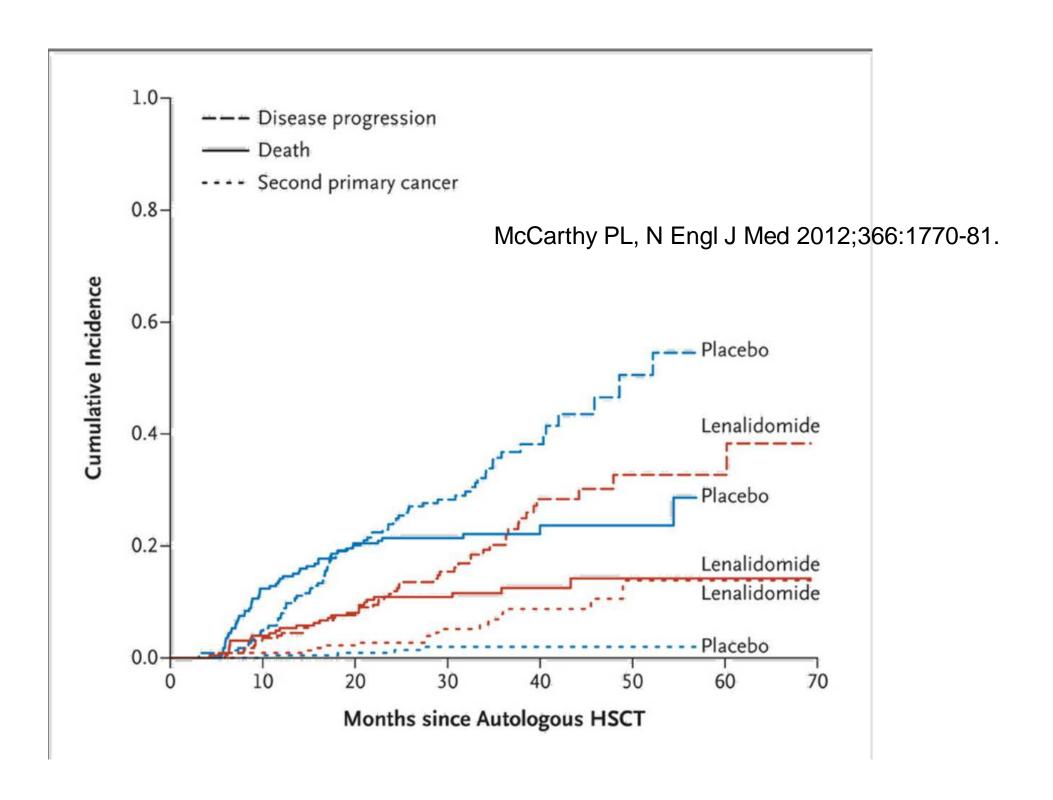
	Initial	N	Time of	Lenalidomide	versus Placebo	
	TT	IN	Rando	Median PFS after Rando	OS after Rando	
Attal et al.1	SCT	614	3 m post SCT	41 m vs 23 m***	4-year OS 73% vs 75%	
McCarthy et al. ²	SCT	460	SCT	39 m vs 21 m***	3-year OS 88% vs 80%*	
Palumbo et al. ³	MPR	305	Diagnosis	31 m vs 14 m**	3-year OS 70% vs 62%	

^{1.} Attal M, et al. NEJM 2012

IFM 2005-02: Grade 3–4 AEs (unblinding)

AE	Placebo	Lenalidomide
Anemia	2%	3%
Thrombocytopenia	7%	14%
Neutropenia	18%	51%
Febrile Neutropenia	1%	1%
Infections	5%	13%
DVT/PE	2%	6%
Skin disorders	4%	7%
Fatigue	2%	5%
Peripheral Neuropathy	1%	1%

Number of patients with at least one SPM (10/2011)


	Lenalidomide	Placebo	Total
	(N= 306)	(N= 302)	(N= 608)
Hematologic malignancies (%)	13 (4.2)	5 (1.7)	18 (3.0)
AML/MDS	5	4	
ALL	3	0	
Hodgkin lymphoma / Non-HL	4/1	0/1	
Solid tumours (%)	10 (3.3)	4 (1.3)	14 (2.3)
Esophageal / Colon	4	0	
Breast	2	0	
Lung / Sinus	1	1	
Kidney / Prostate	3	2	
Melanoma	0	1	
Non-Melanoma skin cancers (%)	5 (1.6)	3 (1.0)	8 (1.3)
Total (%)	26* (8.5)	11** (3.6)	37 (6.1)

Attal et al N Engl J Med 2012

Lenalidomide toxicity

	Grade 3	3 Non	Grade	4	
	Hemato	ologic AE	Non F	Hematologic A	łΕ
	N	%	Ν	%	
Max Non-Hematologic Len	73	32	8	3<0.001	
Placebo	37	16	6	3	

McCarthy PL, N Engl J Med 2012;366:1770-81.

Maintenance with Bortezomib

	Initial	Maintenance			
	therapy	Maintenance regimen	PFS	os	
Mateos et al. ¹	VMP	VT	32 m	2-year: 86%	
Mateos et al.	vs VTP	VP	24 m	2-year: 81%	
	VMPT	VT	3-year: 60%	3-year: 89%	
Palumbo et al. ²	VMP	0	3-year: 42%*	3-year: 89%	
Commonable of al 3	PAD + SCT	V	3-year: 48%	3-year: 78%	
Sonneveld et al. ³	VAD + SCT	Т	3-year: 42%*	3-year: 71%*	

Induction Therapy Myeloma

Doublet? Triplet? Quadruplet?

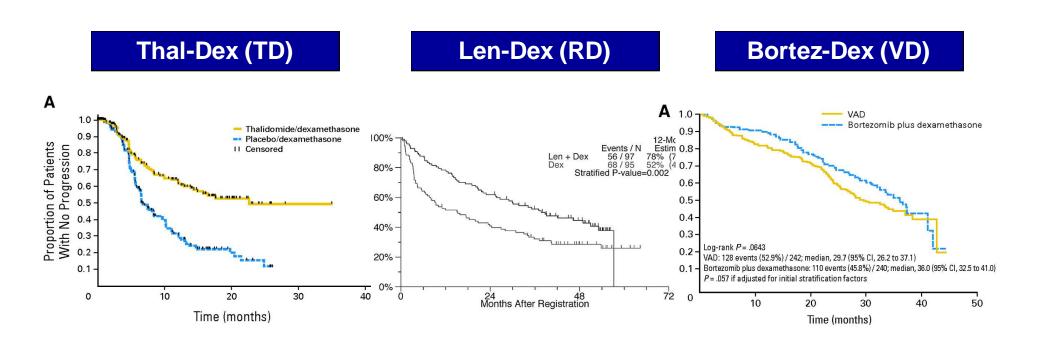
- In myeloma progression is usually biochemical not clinical
- Does patient survival or QOL change whether therapy is initiated when M protein is 1.3 rather than 0.8?
- If survival is not the end point improved QOL is of interest to our patient population.

Which is the Better Strategy? Comparing doublet & Triplet combinations

Doublet Induction

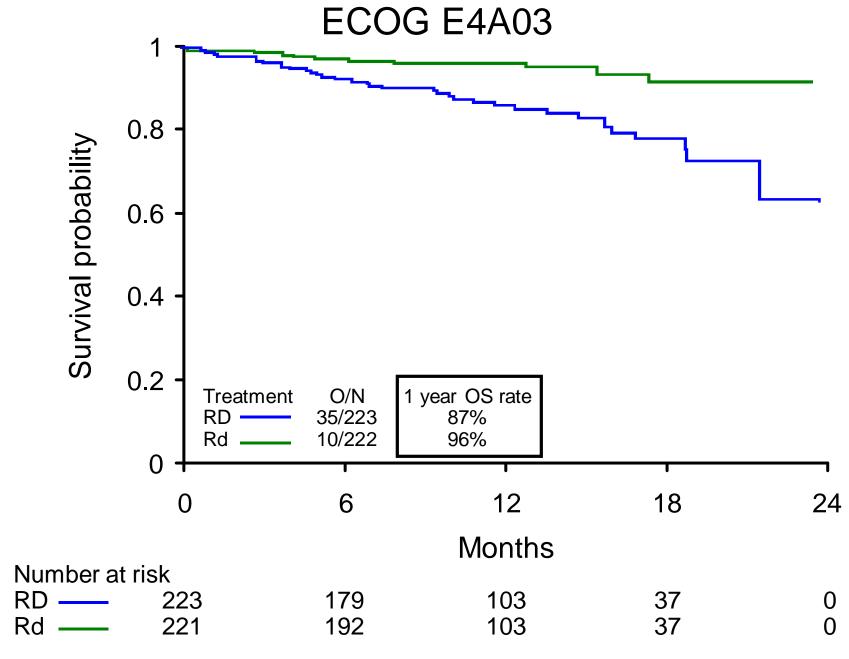
Triplet Induction

Relapse regimens Including the missing third agent


versus

Relapse regimens New agents

But NOT relapse regimens minus The third agent

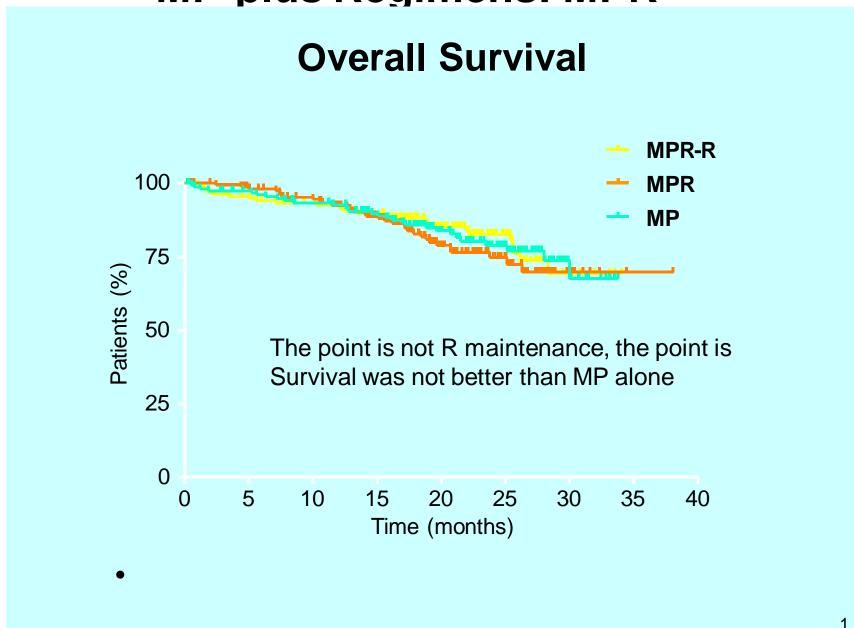

- In new diagnosis the control arm must have access to investigational agent at prog.
- In Vista of 338 randomized to MP; 130 received subsequent bortezomib
 remainder did not(62%) (JCO 28:2259-66)

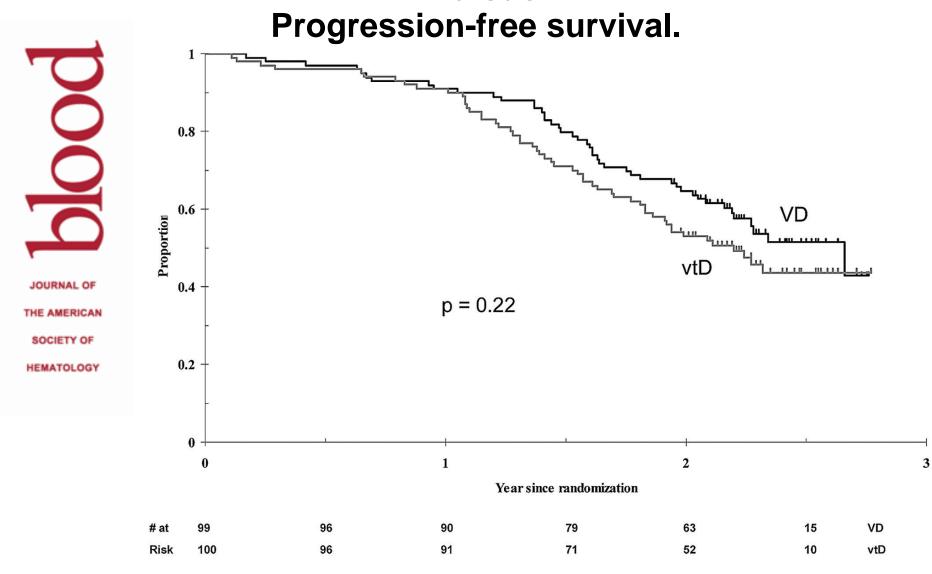
Doublet-Regimens

PFS better than Dex/VAD

Rajkumar, S. V. et al. J Clin Oncol 2008; 26:2171-2177 Zonder J A et al. Blood 2010;116:5838-5841 Harousseau J et al. JCO 2010;28:4621-4629

Can 3 or more drug regimens provide additional benefit?

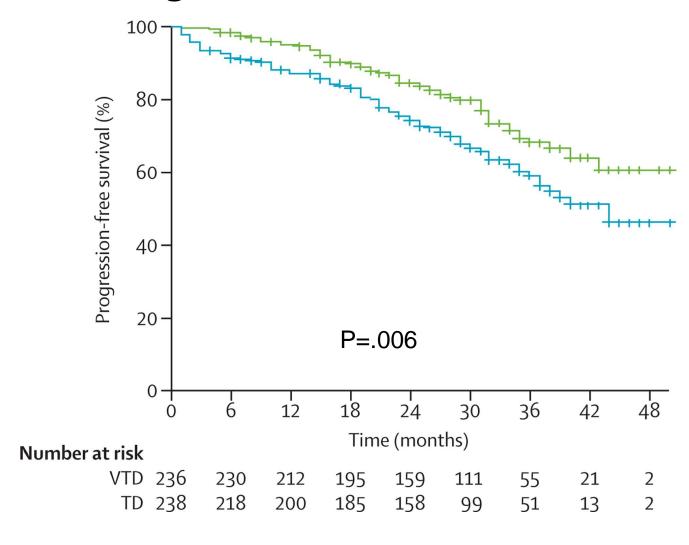

Doublets


- TD
- RD
- VD

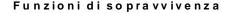
Triplets

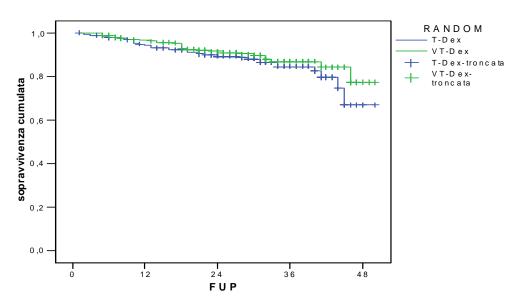
- VTD
- VRD
- VCD

MP-plus Regimens: MPR



VTD versus **VD**


Moreau P et al. Blood 2011;118:5752-5758


VTD vs TD Progression free survival

Cavo et al. Lancet <u>376, Issue 9758</u>,, Pg 2075–85

 The estimated 3-year rate of overall survival was 86% in the VTD group and 84% in the TD group (p=0-30).

Cavo et al. Lancet <u>376, Issue 9758</u>,, Pg 2075–85

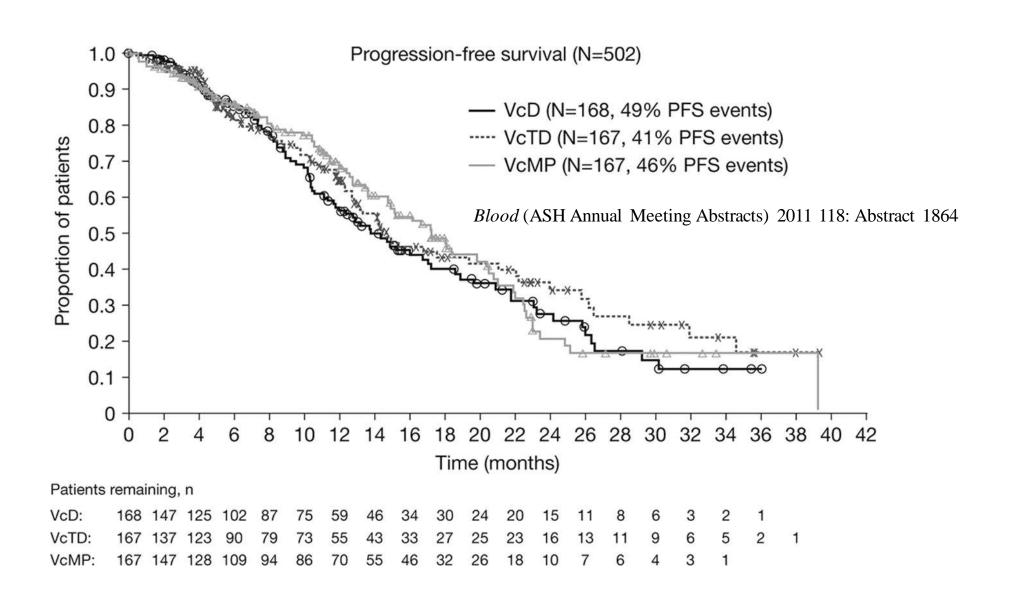
Options in Transplant Ineligible Patients

Non-melphalan based

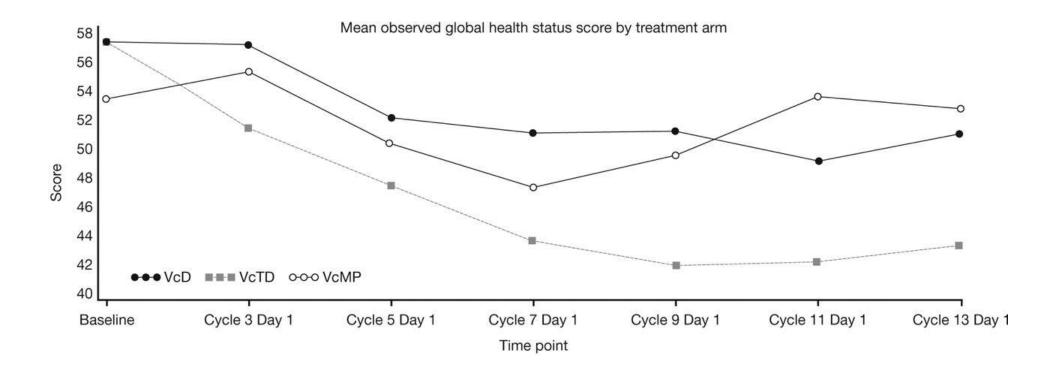
Rd

VCd

VRd


Melphalan based

MPT

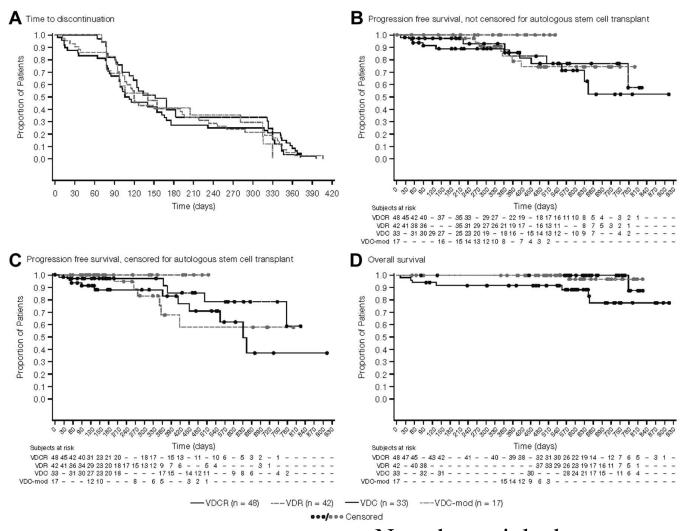

VMP

Study	Regimen	TTP PFS/EFS	Overall Survival (months)	3 year OS (%)
Facon (Lancet 2007)	MPT	28	52	~65%
San Miguel (JCO 2010)	VMP	24	NR*	69%
Rajkumar (Lancet Oncol 2010)	Rd	25	NR*	75% (Rd age ≥65)

UPFRONT

UPFRONT

Blood (ASH Annual Meeting Abstracts) 2011 118: Abstract 1864

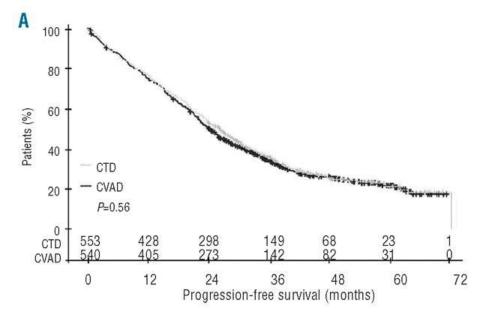

JOURNAL OF

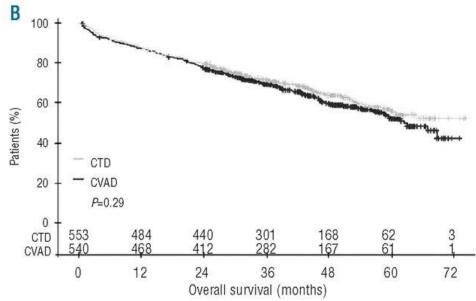
THE AMERICAN

SOCIETY OF

HEMATOLOGY

EVOLUTION




Kumar S et al. Blood 2012;119:4375-4382

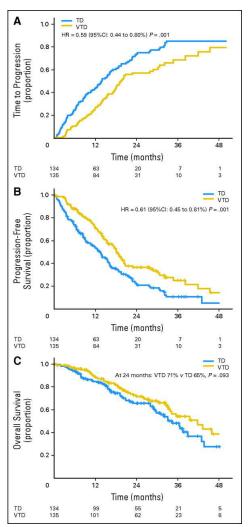
Four vs triplet

No substantial advantage was noted with VDCR over the 3-drug combinations.

Impact of induction therapy on survival: (A) progression-free survival and (B) overall survival (P values from unadjusted log rank tests; per-protocol population). MRC IX Effective salvage negates PFS & OS benefit even if thal not used up front

Morgan G J et al. Haematologica 2012;97:442-450

Note numbers in each arm
OS not better in subsets <CR;
Or based on High risk standard risk
FISH


haematologica

the hematology journal

Comparison of the triple (bortezomib-thalidomide-dexamethasone) and dual (thalidomide-dexamethasone) treatment groups.

Even comparing doublet & Triplet in the relapsed setting Superior PFS does not translate To superior OS. Moreover gr 3 neurotoxicity in triplet was 29 vs 12% p<.001

Not living longer & with Triplet not living better

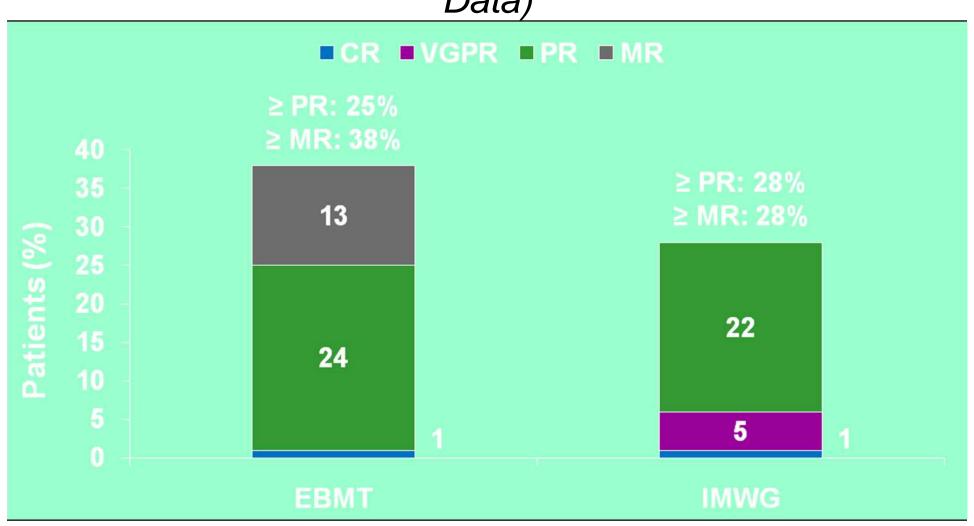
Garderet L et al. JCO 2012;30:2475-2482

New Drugs

Pomalidomide in R/R Multiple Myeloma

Study	Phase	N	Treatment	Population	Median Prior Therapies (Range)	ORR (≥ PR)
Schey ¹	1	24	Pom: 1, 2, 5, 10 mg (28/28-day cycle)	≥ 1 prior therapy	3 (1-6)	54%
Richards on ²	1	38	Pom: 2, 3, 4, 5 mg (21/28-day cycle) Dex: 40 mg/week ^a	≥ 2 prior therapies including Len and Bort	6 (2-17)	25%
Richards on ²	2	22	Pom: 4 mg (21/28-day cycle) ± Dex: 40 mg/week	≥ 2 prior therapies including Len and Bort	5 (2-13)	25%
Leleu ³	2	84	Pom: 4 mg (21/28-day cycle vs 28/28-day cycle) Dex: 40 mg/week	and Bort _{2. Richardson F}	4 (1-8) hey SA, et al. <i>J Clin Oncol</i> . 2009, et al. <i>Blood</i> . 2010;116:377-3 leu X, et al. <i>Blood</i> . 2010;116:3	78.[abstract 864].

Pomalidomide in R/R Multiple Myeloma


Study	Phase	Na	Treatment	Population	Median Prior Therapies (Range)	ORR (≥ PR)
Lacy ¹	2	60	Pom: 2 mg (28/28-day cycle) Dex: 40 mg/week	1-3 prior therapies	2 (1-3)	63%
Lacy ²	2	34	Pom: 2 mg (28/28-day cycle) Dex: 40 mg/week	Len-refractory	4 (1-7+)	32%
Lacy ³	2	35	Pom: 2 mg (28/28-day cycle) Dex: 40 mg/week	Len- and Bort- relapsed/refract ory	6 (3-9)	26%
Lacy ⁴	2	70	Pom: 2 mg vs 4 mg (28/28-day cycle) Dex: 40 mg/week	Len- and Bort- relapsed/refract ory	6 (2-8+) acy MQ, et al. <i>J Clin Oncol</i> . 20	26% 09;27:5008-501

^a Four separate populations of a single phase 2 trial. Bort, bortezomib; Dex, dexamethasone; Len, lenalidomide; ORR, overall response rate; Pom, pomalidomide; PR, partial response.

Lacy MQ, et al. J Clin Oncol. 2009;27:5008-5014.
 Lacy MQ, et al. Leukemia. 2010;24:1934-1939.
 Lacy M, et al. J Clin Oncol. 2010;28:573s.[abstract 8002].
 Lacy M, et al. Blood. 2010;116:377.[abstract 863].

Pom LD Dex in R/R Myeloma

MM-002 Phase 2 Portion – Efficacy (Aggregated Data)

Pomalidomide Future Directions

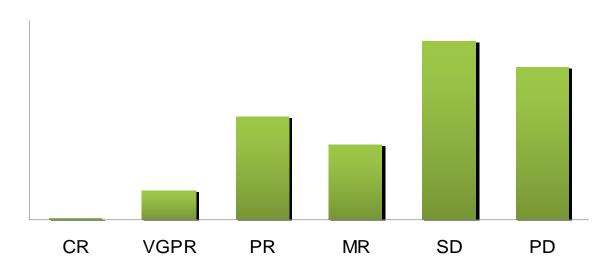
Combinations	Population	N	ORR
Pomalidomide, cyclophosphamide, pred	R/R		65%
Pomalidomide, clarithromycin, dex	R / R, ≥ 3 tx		60%
Pomalidomide, bortezomib, dex	Trials underway		

Pred, prednisone; dex, dexamethasone, ORR, overall response rate; R / R, relapsed / refractory; tx, therapy.

Phase III (Europe): Pomalidomide / dex vs dex

Palumbo A, et al. *ASH Annual Meeting Abstracts*. 2011;118(21):632. Mark TM, et al. *ASH Annual Meeting Abstracts*. 2011;118(21):635. National Institutes of Health. Available at: www.clinicaltrials.gov. Accessed March 2011.

Carfilzomib PX-171-004


- Bortezomib naïve N= 129
- Cohort 1 20 mg/M2 N=59
- Cohort 2 20 mg/M2 cycle1 then 27 mg/M2
- PR + MR cohort 1 59.3% Cohort 2 64.2%
- Median DOR 13.1 mo; Median TTP 7.6
- Fatigue 62%; Nausea 49 %
- PN 17.1% grade 3 1 patient grade 4 none

Carfilzomib Monotherapy in Heavily Pre-Treated MM

DCR = 69%

CBR = 37%

ORR = 24%

Median OS

Median OS for \geq PR

Median PFS

Median PFS for \geq MR

Median DOR

Median follow-up = 14.3 months

Carfilzomib

N = 257

15.4 months

20.7 months

3.7 months

9.5 months

8 months

Unfavorable cytogenetics did not significantly impact response rates or DOR

CR, complete response; VGPR, very good partial response; PR, partial response; MR, marginal response; SD, stable disease; PD, progressive disease; DCR, disease control rate; CBR, clinical benefit rate; ORR, overall response rate; OS, overall survival.

Siegel DS, et al. ASCO Meeting Abstracts. 2011;29(15 suppl):8027. Jakubowiak AJ, et al. ASH Annual Meeting Abstracts. 2011;118(21):1875.

CRd new diagnosis

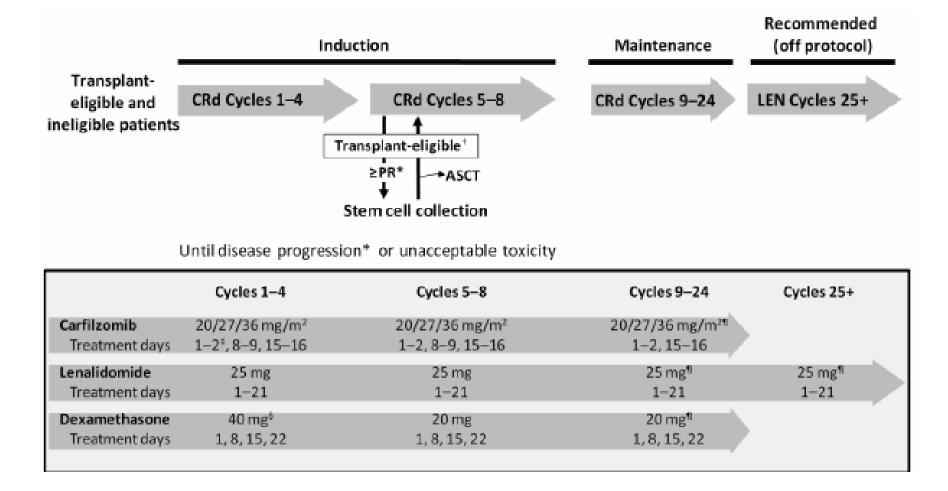
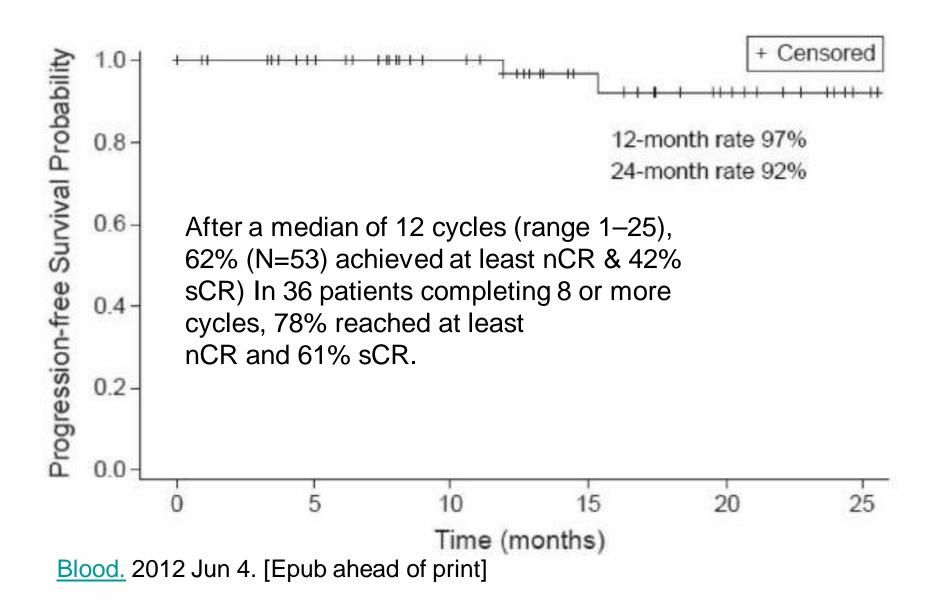
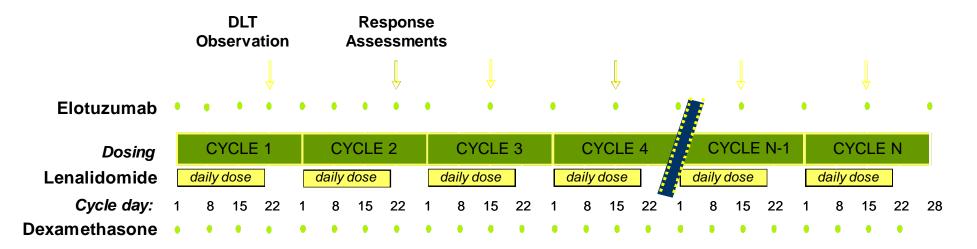



Figure 4. Progression-free survival (N=53)

Carfilzomib abstract 303 Siegel

- 20/M2 12 cycles same schedule all prior bortezomib
- Neuropathy 69%
- IMiD 77%
- ≥PR 18% ≥MR 30%
- Median TTP 5.3 mos
- Patients being enrolled @27/M2

Niesvetsky Blood 2010 abstract 304


- Rd+CFZ Ph 1
- 16 cycles Dex 1,8,15,22 cycles 1-4; d1 only cycles 5-16
- R d1-21; CFZ 1,2,8,9,15,16 cycles 1-8;
 1,2,15,16 cycles 9-16
- N=32, 28 prior IMiD
- MTD R 25, CFZ 27/M2 ≥VGPR 38%, ≥PR 59% ≥MR 72% Ph3 CFZ Rd vs Rd

Elotuzumab

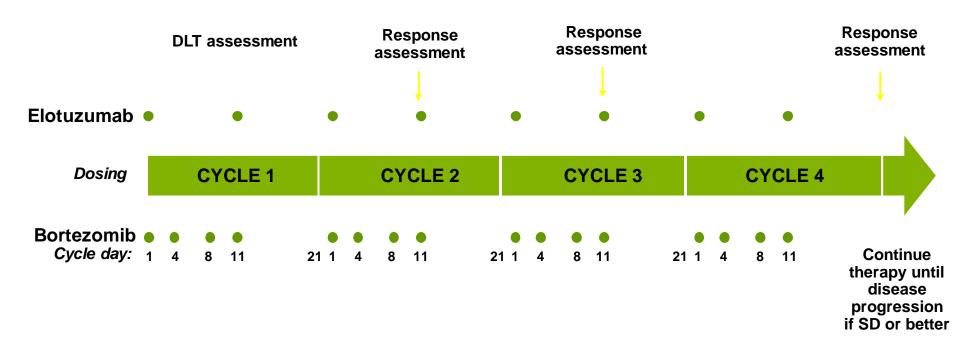
- Anti CS-1 humanized monoclonal expressed on PC's NK's & CD8 T cells
- Phase 1 study IV q 2 weeks
- MTD was not reach @ 20 mg/kg (1.6 g for an 80kg male vs 750 mg rituximab and 30 mg tiw for alemtuzumab)
- N=34 ORR 0

Blood 120: 552-9; 2012

Phase 1b/2 Study Schema

- Phase 1b 3+3 dose escalation cohorts evaluating elotuzumab 5, 10, and 20 mg/kg IV in combination with lenalidomide 25 mg PO and low-dose dexamethasone PO
 - First 5 patients limited to 6 cycles of therapy; remaining 23 treated until disease progression or unacceptable toxicity, if earlier
- Phase 2 randomizing (1:1) approximately 60 patients to either
 10 or 20 mg/kg elotuzumab

Best Confirmed Response (IMWG Criteria)


	Total Patients (%)	Lenalidomide- Naïve Patients (%)
Total ITT	28	22
ORR (≥ PR)	23 (82)	21 (95)
CR	1 (4)	1 (5)
VGPR	7 (25)	6 (27)
PR	15 (54)	14 (64)
SD	4 (14)	1 (5)
PD	1 (4)	0

Blood 2010:116a,abstract 1936

ORR by Prior Lines of Therapy

Prior Lines of	All Patients		Lenalidomide- Naïve Patients	
Therapy	Total	RR (%)	Total	RR (%)
1	7	6 (86)	6	6 (100)
2	5	4 (80)	3	3 (100)
3	4	4 (100%	4	4 (100)
≥4	12	9 (75)	9	8 (89)
Median: 3	28	23 (82)	22	21 (95)

Study Schema

- 3+3 dose escalation with elotuzumab 2.5, 5, 10, and 20 mg/kg IV in combination with bortezomib 1.3 mg/m² IV
- Expansion phase with 12 additional patients at elotuzumab 20 mg/kg
- Dexamethasone 20 mg PO added at cycle 2 or 3 on days 1, 2, 4, 5, 8, 9, 11, 12 if disease progression noted

Efficacy

Best Confirmed Response

Parameter	Response by EBMT (%)	Response by Combined Uniform Criteria (%)
Total patients*	27	27
(≥ PR)	13 (48)	15 (56)
(≥ MR)	17 (63)	19 (70)
CR	2 (7)	2 (7)
SD	7 (26)	5 (19)
PD	3 (11)	3 (11)

Conclusion

- There is more that we do not know than we know
- For now Len maintenance is not standard of care for all myeloma patients. Longer follow up on any possible survival benefits and late toxicities (SPM) required
- This is not to say that Len maintenance is wrong, it could be completely right but longer time necessary to buy in

Conclusion

- Triplet induction with novel agents is clearly better than doublets of standard therapy (VAD)
- Triplet induction with novel agents may not produce better OS than doublets.
- Time with neurotoxicity is a real issue as survival imporves.
- New drug development is rapid & exciting

 The ability to successively salvage patients with new more active agents hold out the hope of pushing survivals to the point where myeloma becomes a truly chronic disease.