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Bortezomib in the treatment of AL amyloidosis: targeted therapy?
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In the current issue of the journal four papers are
dedicated to the treatment, and the related toxicity,
of conditions caused by the deposition of mono-

clonal light chains, including AL amyloidosis and light
chain cast nephropathy. In particular, the paper by
Kastritis et al.1 reports, for the first time, the outstand-
ing efficacy of the proteasome inhibitor bortezomib in
the treatment of AL amyloidosis. 

Why are cells secreting amyloidogenic monoclonal
proteins so sensitive to these drugs? Recent evidence
indicates that the effect of bortezomib on myeloma
cells cannot be completely explained by the inhibition
of the transcription nuclear factor-κB (NF-κB), and that
the stress of the endoplasmic reticulum (ER) linked to
their function as secretory cells contributes significant-
ly to their sensitivity to proteasome inhibitors. Here
we discuss the possible relationships between the syn-
thesis and secretion of misfolded proteins, cell stress
and the role of the ubiquitin-proteasome system. A
detailed understanding of these key pathways is bound
to improve the care of patients with plasma cell
dyscrasias, including those with AL amyloidosis. 

Systemic AL amyloidosis is a protein misfolding dis-
ease2 characterized by the over-production, usually by
relatively small clones of immunoglobulin (Ig) secreting
cells,3 of a light chain with mutations4 which destabi-
lize the protein and favor its aggregation and tissue
deposition.5 The deposits are composed of amyloid fib-
rils, presenting a cross β supersecondary structure. The
process of amyloid deposition produces tissue damage
and eventually organ failure, leading to the death of
untreated patients. 

AL amyloidosis is a serious and complex disease,
with an incidence of 8.9/million person-years. Despite
severe difficulties in the diagnosis and treatment of AL
amyloidosis, patients with this disease can achieve
long-term survival if properly managed. Optimal man-
agement requires early diagnosis, correct amyloid typ-
ing, prompt effective treatment, close follow-up and
careful supportive therapy. One of the most important
determinants of outcome is early diagnosis, as severe
amyloid organ disease may preclude the use of poten-
tially effective treatment regimens. Systemic involve-
ment affecting vital organs such as the heart, kidneys
and liver renders these patients particularly fragile and
sensitive to chemotherapy.

Response to treatment is a valid end-point for
predicting the outcome of patients with AL
amyloidosis

Differently from multiple myeloma, in which sur-

vival is determined by the tumor mass, in AL amyloi-
dosis the progressive systemic damage is caused by
the pathogenic light chain, and therefore the ultimate
goal is the elimination, or significant reduction, of the
offending protein in the most rapid way and with the
least possible systemic toxicity.3 The extent and rapid-
ity of reduction of the monoclonal light chain are of
paramount importance since they are closely related to
outcome. Clinical evidence supports this assumption.
In patients treated with non-myeloablative chemo-
therapy, a >50% reduction of the amyloidogenic light
chain (partial remission, PR) is associated with
improved survival.6

Our group observed that, in patients with cardiac AL
amyloidosis treated with non-myeloablative chemo-
therapy, the reduction of the circulating light chains
concentration translated in most patients into a reduc-
tion of the serum concentration of NT-proBNP, a sensi-
tive cardiac biomarker, and improved heart function,
and that the decrease in NT-pro BNP afforded by com-
plete remission (CR) was greater than that by PR.7

Furthermore, survival is significantly prolonged when
light chains and NT-proBNP decrease, whereas patients
with cardiac AL who do not respond promptly to
chemotherapy are at risk of early death.7 More recent-
ly, the Mayo Clinic Group reported that high light
chain concentrations before transplantation predicted a
higher risk of early death. Moreover, survival was pre-
dicted by the absolute light chain concentrations
achieved after autologous stem cell transplantation
(ASCT), rather than by the percent reduction.8

In this issue of the journal, Gertz et al. analyze 282
patients who underwent ASCT.9 In agreement with
others,10,11 their results show that the degree of
response, i.e. the extent of the reduction of the amy-
loidogenic light chain concentration, is an important
predictor of survival. Patients who achieved a CR sur-
vived longer than those achieving a PR, who in turn
survived longer than patients with less than a 50%
reduction in light chain concentration. Furthermore,
multivariate analysis showed that the only significant
predictors of survival were response to chemotherapy
and a cardiac biomarker, serum troponin T levels.
These results are similar to those obtained in our gen-
eral AL amyloidosis population in which multivariate
analysis showed that cardiac involvement and
response to therapy are independent prognostic deter-
minants.12 Hematologic response, i.e. the degree of
reduction of light chain concentration, should, there-
fore, be considered a valid end-point in clinical trials for
AL amyloidosis and efforts should be directed at



increasing the hematologic CR rate. Strategies to
accomplish this include the use of new agents that
have been employed successfully in the treatment of
multiple myeloma, e.g. thalidomide,13-15 lenalido-
mide,16,17 or bortezomib.18,19

Bortezomib treatment produces a high rate of rapid
responses in AL amyloidosis 

In this issue of the journal, Kastritis et al.1 report on 18
AL amyloidosis patients, including seven who had
relapsed or progressed after previous treatments, who
were treated with the combination of bortezomib and
dexamethasone (BD). The remarkable findings of this
study are: (i) an unprecedented hematologic response
rate of 94%, including 44% CR, among evaluable
patients, which translated into organ response in 28%;
notably, all seven previously treated patients achieved a
hematologic response; and (ii) the rapidity of the hema-
tologic response (median 0.9 months; range, 0.7-1.5)
compared to the 3.5 to 6 months of other effective treat-
ments. Thus the BD combination seems to fulfill many
requirements for optimal treatment of AL amyloidosis,
providing a high response rate and fast action. The con-
cerns regard the duration of the response and the toler-
ability of the treatment. The relatively limited follow-
up of living patients (median 11.2 months) does not
allow conclusions to be drawn on the durability of
hematologic or organ response, although the hemato-
logic or organ progression observed in five patients in a
median time of 6.8 months is of concern. If the hemato-
logic responses are durable, organ response rates could
be higher than the 28% observed so far by the authors.
Indeed, organ responses are time-dependent: the medi-
an time for renal responses is 1 year and such responses
can be delayed up to 36 months after ASCT.20

Kidney response may be accelerated by bortezomib
The study by Ludwig et al.21 reported in this issue of

the journal suggests that bortezomib may accelerate the
kidney response, not only through its rapid reduction of
the monoclonal protein concentration, but also via its
NF-κB inhibitory activity. These authors report reversal
of acute monoclonal protein-induced renal failure by
bortezomib-based therapy in five out of eight myeloma
patients. In all patients, renal improvement was associ-
ated with a significant reduction of the monoclonal pro-
tein load. Toxicity was manageable, and, again, the
hematologic response was rapid (median 1.4 months),
confirming that bortezomib-based combination treat-
ment is an excellent, safe choice for acute renal failure in
multiple myeloma, as indicated by previous trials.22-24

The authors suggest that bortezomib may contribute to
improving kidney disease through the inhibition of NF-
κB. Proteinuria, caused either by Bence-Jones protein
overflow, or by amyloidosis-dependent glomerular
damage, overloads the proximal tubular cells inducing
the production of inflammatory and pro-inflammatory

cytokines via both NF-κB-dependent and -independent
pathways.25 The end result is apoptosis of tubular cells,
persistent inflammation and progressive fibrosis leading
to irreversible end-stage renal failure. 

Targeting NF-κB activation seems an effective means
of interrupting the process of tubulointerstitial injury, as
documented in animal models.26,27 By preventing protea-
somal degradation of the NF-κB endogenous inhibitor I-
κB,28 bortezomib may contribute to improving renal
function both in myeloma kidney disease and in amy-
loid nephropathy.

Managing bortezomib toxicity 
In the present issue Cavaletti and Nobile-Orazio29

review the sensitive issue of bortezomib toxicity,
warning clinicians to be prudent. Neurological toxicity,
to either the peripheral or autonomous nervous sys-
tem, is the main reason for interrupting or adjusting
bortezomib administration. However, this is a cumula-
tive, dose-related adverse effect. Careful monitoring,
with prompt dose reductions, as applied in the study
by Kastritis et al.,1 can allow continuation of therapy
with an overall hematologic benefit and minimize side
effects. Although dose reductions and extending the
intervals between infusions are the mainstays for pre-
venting the worsening of neuropathy, the observation
that a few patients benefited from lenalidomide, with
symptomatic improvement of peripheral neuropathy,
is worth further investigation.30

Bortezomib: delivering the final blow to plasma cells
on the edge?

As mentioned earlier, the particularly relevant find-
ings of the study by Kastritis et al.1 are the high rate of
response to bortezomib and the rapidity of the respons-
es (Figure 1). Why are clonal cells secreting amyloido-
genic immunoglobulin so sensitive to this drug?

Bortezomib is a potent and selective inhibitor of the
26S proteasome,31,32 a multisubunit protein complex pres-
ent in all eukaryotic cells33 which carries out the regulat-
ed degradation of ubiquitinated proteins.34 In addition to
damaged or aberrant proteins, proteasomes degrade pro-
teins involved in the regulation of cell-cycle progression,
oncogenesis, and apoptosis.35 The proteasome plays a
fundamental role in NF-κB activation through the degra-
dation of I-κB.28 Proteasome inhibition stabilizes I-κB,
leading to NF-κB inhibition. This latter function is often
invoked to explain the efficacy of bortezomib against
multiple myeloma (MM). Constitutive NF-κB activity
mediates MM cell survival as well as resistance to
chemotherapy and radiotherapy,36,37 by multiple mecha-
nisms, including the induced expression of anti-apoptot-
ic proteins, adhesion molecules, and autocrine growth
factors.38-40 However, bortezomib inhibited MM cell pro-
liferation more efficiently than a specific IκB kinase
inhibitor, PS-1145,37,41 suggesting that proteasome
inhibitors affect additional pathways. 

Editorials & Perspectives

haematologica/the hematology journal | 2007; 92(10) | 1303 |



| 1304 | haematologica/the hematology journal | 2007; 92(10)

Stress in the antibody factory
Mature plasma cells are terminally differentiated ele-

ments of the B lymphocytic lineage with a highly devel-
oped endoplasmic reticulum (ER) specialized in Ig secre-
tion. Each of them masters the synthesis, assembly and
secretion of thousands of antibodies per second42-44

(Figure 2). As in all cells, misfolded or orphan proteins
are recognized and prevented from proceeding to the
Golgi by the ER quality control systems.45 The accumu-
lation of misfolded proteins in the ER lumen initiates a
multidimensional signaling cascade known as the unfold-
ed protein response (UPR).46-48 Several mechanisms are
activated to cope with unfolded proteins: first, transla-
tion is attenuated. The transcription of genes enhancing
protein folding (ER resident chaperones and folding
enzymes) and degradation (ERAD) is then increased,
while the entry of proteins into the ER49 and the stabili-
ty of mRNA encoding secretory proteins50 are selective-
ly inhibited. If these measures are not sufficient for
eliminating misfolded proteins from the ER, apoptotic
pathways are activated.51-56 Much is being learned about
the mechanisms that shift an adaptive UPR into a mal-
adaptive response, ultimately leading to cell death.57

Perhaps not surprisingly in view of the physiological
role of plasma cells as professional Ig secretors, certain
UPR genes are essential for plasma cell differentiation, Ig
synthesis and survival (refs. #44, 58 and references therein). 

Somewhat unexpectedly, when the protein produc-
tion facilities increase to satisfy abundant Ig synthe-
sis, proteasome capacity decreases during plasma cell
differentiation.58 In correlation with impaired proteol-
ysis, poly-ubiquitinated proteins accumulate, certain
death-inducing proteins are stabilized and hypersensi-
tivity to proteasome inhibitors ensues, prior to spon-
taneous apoptosis. 

The fall in proteasomal levels is even more striking
when plasma cell differentiation is obtained in vivo by

injecting lipopolysaccharide into mice.58 An excessive
load (Ig synthesis, part of which is bound to be defec-
tive) on a reduced proteasomal capacity makes Ig-
secreting cells hypersensitive to bortezomib.58 That the
professional activity of plasma cells, i.e. exuberant Ig
production, sensitizes them to proteasome inhibitors
is further supported by recent reports correlating the
sensitivity of myeloma cells with Ig synthesis.41,59

These observations led to the load vs capacity model
correlating protein synthesis, proteolytic efficiency
and sensitivity to proteasome inhibitors.44

Amyloidogenic plasma cells as preferential targets of
proteasome inhibitors?

Since proteasomal degradation is coupled to the
extraction of aberrant proteins from the ER lumen,
bortezomib and other proteasome inhibitors are bound
to cause ER accumulation of misfolded secretory pro-
teins, and hence ER stress.41 In view of the fact that pro-
longed ER stress causes apoptosis, these observations
have profound implications for the handling of AL
amyloidosis. Despite the fact that the misfolding-prone
amyloidogenic light chains5,60,61 negotiate transport
across the stringent ER quality control checkpoints,
they likely represent a load for the ER protein factory:
the higher their production, or the more they are mis-
folded (as a result of the destabilization caused by
peculiar somatic mutations) the stronger the UPR
induction, and hence the lower the threshold for apop-
tosis. In this scenario, bortezomib impairs ERAD, sta-
bilizes I-κB, Bim and Bax, and eventually the final blow
is delivered. The additional stress imposed to the ER
machinery by amyloidogenic light chains could, there-
fore, increase the sensitivity of amyloidogenic plasma
cells to bortezomib. Recent observations suggest that
proteolytic activity is impaired in the brains of patients
with Alzheimer’s disease (AD),62,63 and several studies
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Figure 1. Involved FLC at baseline
and after each cycle of the combi-
nation of bortezomib and dexam-
ethasone (BD) in the 18 patients
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have shown that Aβ protein inhibit the proteasome64-66

and that this inhibition may be mediated by Aβ
oligomers.67 Furthermore, extracellular aggregates of
another amyloidogenic protein, human islet amyloid
polypeptide, impair the ubiquitin-proteasome pathway
resulting in ER stress-mediated pancreatic β-cell apop-
tosis.68 In analogy with these observations, extracellular
oligomers of amyloidogenic light chains could inhibit
proteasome activity, sensitizing amyloidogenic plasma
cells in a sort of autocrine inhibitory loop. These
hypothesized mechanisms, i.e. additional ER stress
caused by misfolded light chains and the inhibitory
loop, makes the amyloidogenic plasma cell clone strive
for survival and may account for its usual small size.3

However, it should be noted that the existence and the
putative biological role of light chain oligomers are at
the moment only hypothesized on the basis of clinical

clues and preliminary experimental evidence. The clar-
ification of this issue would be highly rewarding
because soluble, prefibrillar aggregates might play a
direct role not only on tissue toxicity but also in the cel-
lular response to new drugs which interfere with pro-
tein processing and metabolism.

In conclusion, both extracellular oligomers of the
amyloidogenic light chain, and the accumulation of
misfolded light chain in the ER may act synergistically
to over-stress the amyloidogenic plasma cells trans-
forming them into primary targets of proteasome
inhibitors. Several therapeutic strategies targeting
other sensitive components of the ER synthetic
machinery, such as inhibition of the aggresome69 and
of heat shock proteins70 can be combined to deliver the
final coupe de grace to amyloidogenic plasma cells.
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Figure 2. The dual role of stress in plasma cell differentiation. In the early stages of plasma cell differentiation, activation of Xbp1 and
other UPR-related genes is likely important for equipping differentiating B cells for the exponentially increasing secretory demand. Later
on, the hectic work in the antibody factory induces ER stress, metabolic and redox imbalances and proteotoxicity, eventually leading to
apoptosis. Amyloidogenic plasma cells could experience additional stress caused by the misfolded light chain, and may have a lower
threshold for apoptosis. The inhibition of the proteasome by bortezomib exaggerates ER stress, blocks NF-κB activation, further stabi-
lizes pro-apoptotic factors, eventually causing apoptosis. In the proposed scheme, attenuating Ig synthesis would reduce stress and pro-
long survival. Unlike in MM, this could be a goal in AL management. Adapted from Cenci & Sitia.44
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