

Weighing the Options at First Relapse

Hermann Einsele, MD

Julius Maximilian University of Würzburg Internal Medicine II Würzburg, Germany

European Expert Perspective on Treatment at Disease Progression

Definition	Treatment indication, if:
Clinical relapse	 Development of new soft-tissue plasmacytomas or bone lesions Definite increase in size of existing plasmacytomas or bone lesions Hypercalcemia (11.5 mg/dL; 2.65 mmol/L) Decrease in hemoglobin of >2 g/dL (1.25 mmol/L), because of myeloma Rise in serum creatinine by 2 mg/dL or more (177 mmol/L) or more), because of myeloma Hyperviscosity requiring therapeutic intervention
Significant biochemical relapse in patients <u>without</u> clinical relapse <i>(IMW Paris 2011)</i>	 Doubling of the M-component in two consecutive measurements separated by <2 months with the reference value of 5 g/L, <u>or</u> In two consecutive measurements any one of the following changes: increase of the absolute levels of serum M protein by ≥10 g/L increase of urine M protein by ≥500 mg per 24 hours increase of involved FLC level by ≥20 mg/dL (plus an abnormal FLC ratio) or 25% increase (whichever is greater)

FLC, free light chain

Reduction in Response Rate, Quality, and Duration With Each Additional Line of Treatment

Kumar S – personal communication

Increasing Incidence of Mutations in the MAPK and CRBN Pathways, and TP53 With the Duration of Therapy

IMiD, immunomodulatory drug; MM, multiple myeloma

Kortüm M, et al. Blood. 2016;128(9):1226-1233.

Screening for Resistance Mechanisms

"Targeted sequencing of refractory myeloma reveals a high incidence of mutations in *CRBN* and *RAS* pathway genes in 50 R/R MM patients"

R/R, relapsed/refractory Kortüm M, et al. *Blood.* 2016;128(9):1226-1233.

Frequency of Mutations							
	CRBN	CRBN Pathway					
<i>de novo</i> Myeloma	<1%	6%					
R/R Myeloma	12%	22%					

All *CRBN* mutations identified associated with potential impact on the CRBN-IMiD binding site!

Resistence Mechanisms Against Proteosome-Inhibitors

Garcia SB, et al. Blood. 2017;130:Abstract 4347.

Case Report

- 62-year-old woman with anemia and T12 compression fracture
- IgGλ MM with 45% marrow plasma cells, del13q, elevated LDH
- Treated with VRD induction, ASCT, and lenalidomide maintenance x 1 year, CR
- 3.5 years later, M-protein reappeared and increased slowly without detectable myeloma-related organ damage and no new cytogenetic changes
- Patient has good performance status and desires therapy

What treatment would you recommend?

- 1. Second ASCT without maintenance
- 2. Lenalidomide + dexamethasone (Rd)
- 3. Carfilzomib + dexamethasone
- 4. Cyclophosphamide + bortezomib + prednisone or dexamethasone
- 5. Monoclonal antibody (elotuzumab or daratumumab) + Rd
- 6. Lenalidomide + bortezomib + dexamethasone

First Relapse

Onkopedia. www.onkopedia.com/de/onkopedia/guidelines/multiples-myelom/@@view/html/index.html#ID0E5ABG and www.onkopedia.com/de/onkopedia/guidelines/multiples-myelom/@@view/html/index.html. Accessed 19 April 2018.

ASCT vs Cyclophosphamide for Treatment of Relapse From Prior ASCT

Transplantation vs Cyclophosphamide After First Relapse

Maintenance should be applied following salvage-ASCT

OS, overall survival; PAD, bortezomib + doxorubicin + dexamethasone; PFS, progression-free survival Cook G, et al. *Lancet Oncol.* 2014;15(8):874-885. Cook G, et al. *Lancet Haematol.* 2016;3(7):e340-e351.

Consensus Guidelines for Salvage ASCT in R/R MM (ASBMT, EBMT, BMT CTN, and IMWG)

- 1. In transplantation-eligible patients relapsing after primary therapy that did NOT include an ASCT, high-dose therapy with ASCT as part of salvage therapy should be considered standard
- 2. High-dose therapy and ASCT should be considered an appropriate therapy for any patients relapsing after primary therapy that includes an ASCT with initial remission duration of >18 months

3. High-dose therapy and ASCT can be used as a bridging strategy to ASCT

Giralt S, et al. Biol Blood Marrow Transplant. 2015;21(12):2039-2051.

ASBMT, American Society for Blood and Marrow Transplantation; BMT CTN, Blood and Marrow Transplant Clinical Trials Network; EBMT, European Group for Blood and Marrow Transplantation; HCT, hematopoietic cell transplantation; IMWG, International Myeloma Working Group

Allogeneic SCT in Multiple Myeloma Time-to-Event Data From 3 German Centers, N = 169

Impact of Duration of Pretreatment/Lines of Previous Therapy

Extramedullary Disease: CXCR4-Directed Radionuclide Therapy

Imaging CXCR4 Expression

CXCR4 receptor expression in myeloma and normal marrow is visualized by PET using the receptor specific ligand ⁶⁸Ga-CPCR4-2 Outpatient

Step 1: Dosimetry ¹⁷⁷Lu-labeled CPCR4-2 (1 GBq) at day -28 to -20

Inpatient

Step 2: Radionuclide-based therapy ¹⁷⁷Lu-labeled CPCR4-2 (8-16 GBq) at day -21 to -14

Step 3: Conditioning Reduced intensity (eg, treosulfan 3x10 g/m²) at day -4 to -2

Step 4: Cell infusion at day 0

PET, positive emission tomography

Stolzenburg A, et al. *Eur J Nucl Med Mol Imaging*. 2018 Apr 2. [Epub ahead of print].

CXCR4-Directed Radionuclide Therapy Successful Application in EMD

EMD, extramedullary disease

Herrmann K, et al. J Nucl Med. 2016;57(2):248-251.

Older Regimens Used for Relapsed Myeloma

Regimen	Type of Study	# Cycles	N	Response Rate (CR Rate)	Median PFS _, Months	Overall Survival†
Len + dex ¹	Phase III	To prog	353	61% (15%)	13.4	38 months
Len + dex ²	Real world data	To prog	159	83% (13%)	7.1	22.7 months
RAD ³ (Len +dex +doxorubicin)	Phase I-II	6	69	77% (14%)	5.7	88% (1-year) [†]
CyBorP/D ⁴	Real world data	8+	94	69% (17%)	13.0	23.5 months
RVD⁵	Phase I-II	8+	64	64% (25%) [†]	9.5 [†]	86% (1-year) [†]
CyRD ⁶	Phase I-II	9+	31	94% (19%)†	16.1 [†]	27.6 months [†]
VDT-PACE ⁷	Real world data	1 (Median; range 1-9)	141	54% (10%)	3.1	8.1 months

[†] Includes all dose levels

1. Dimopoulos MA, et al. *Leukemia.* 2009;23(11):2147-2152. 2. Reece D, et al. *Blood.* 2009;114(3):522-525. 3. Knop S, et al. *Blood.* 2009;113(18):4137-4143. 4. Reece D, et al. *Clin Lymphoma Myeloma Leuk.* 2016;16(7):387-394. 5. Richardson P, et al. *Blood.* 2010;116: Abstract 3049. 6. Reece DE, et al. *Br J Haematol.* 2015;168(1):46-54. 7. Lakshman A, et al. *Am J Hematol.* 2017 Oct 25. [Epub ahead of print].

Treatment of Relapse

Moreau P, et al. Ann Oncol. 2017;28(suppl_4):iv52-iv61.

Lenalidomide + Dex Versus Triplet Regimens Relapsed/Refractory Myeloma After 1 to 3 Prior Regimens

Third Agent	% With Prior Len	% Bortezomib Refractory	% Bortezomib Exposed	% With High-Risk Cytogenetics	Response Rates for Triplet vs Doublet (%)	PFS for Triplet vs Γ∕oublet, Months	Interim OS for Triplet vs Doublet, Months
Proteasome	<i>inhibitors</i>						
Carfilzomib ¹	19.8	No	66 vs 66	12 vs 13	87 vs 67	26.3 vs 17.6 (<i>P</i> = .0001)	73% vs 65% (24 months)
lxazomib ²	12	No	69 vs 69	17 vs 21	78 vs 72	20.6 vs 14.7 (<i>P</i> = .012)	
Immunother	ару			Triplets had hig and superior F	gher response PFS in all trials	rates	
Elotuzumab ³	6	22	68 vs 71	41 vs 42	79 vs 66	19.4 vs 14.9 (<i>P</i> = .014)	43.7 vs 39.6 (P = .026)
Daratumumab	4 18	18	86	15 vs 17	93 vs 76	NR* vs 18.4 (P<.0001)	-

*NR, not reached

1.Stewart AK, et al. *N Engl J Med*. 2015;372(2):142-152. 2. Moreau P, et al. *N Engl J Med*. 2016;374(17):1621-1634. 3. Lonial S, et al. *N Engl J Med*. 2015;373(7):621-631. 4. Dimopoulos MA, et al. *N Engl J Med*. 2016;375(14):1319-1331.

Bortezomib + Dexamethasone vs Triplet Regimens Relapsed/Refractory Myeloma After 1 to 3 Prior Regimens

Third Agent	N	% With Prior Len	% Len Refractory	% With High-Risk Cytogenetics (Composite)	Response Rates for New Regimer vs BTZ + Dex (%)	PFS for New Regimen vs BTZ + Dex, Months	OS for New Regimen vs BTZ + Dex, Months
CFZ (56 mg/m²) + dex ^{#1}	929	38	25	23	77 vs 63	18.7 vs 9.4	47.6 vs 40
Panobinostat ²	768	20			60.7 vs 54.6	12 vs 8.1	38.24 vs 35.38
Elotuzumab ^{§3}	152	75	33	NA	66 vs 63	9.7 vs 6.9	73% vs 66% (2 years)
Daratumumab ⁴	498	68	33	23	83 vs 63	16.7 vs 7.1	NR vs NR

*Doublet vs doublet

§Phase II study

*NR, not reached

1. San Miguel SF, et al. *Lancet Oncol.* 2014;15(11):1195-206. 2. Dimopoulos MA, et al. *Lancet Oncol.* 2016;17(1):27-38. 3. Jakubowiak A, et al. *Blood.* 2016;127(23):2833-2840. 4. Dimopoulos MA, et al. *Br J Haematol.* 2017;178(6):896-905. 5. Lentzsch S, et al. *J Clin Oncol.* 2017;35(Suppl): Abstract 8036.

Three-Drug Regimens for R/R MM After 1 to 3 Prior Lines Based on previous exposure or refractoriness to bortezomib or lenalidomide

(according to inclusion/exclusion criteria of respective studies)

		KRD	KD	Elo-RD	IRD	DRd	DVd	Pano-VD
Bortezomib	Exposure	+	+	+	+	+	+	+
	Refractoriness	-	-	+	-	+	-	-
Lenalidomide	Exposure	+	+	+	+	+	+	+
	Refractoriness	-	+	-	-	-	+	+

What Would Your Preferred Regimen Be at Relapse?

- According to previous lines of therapy
- If the patient has refractoriness to PIs or IMiDs?
- If the patient has high-risk cytogenetics?
- If the patient is elderly?

POLLUX: Responses and PFS By Cytogenetic Status

Total Population (Response Evaluable)

1 to 3 Prior Lines Population

Moreau P, et al. Blood. 2016;128: Abstract 489.

ASPIRE: KRd vs Rd PFS By Cytogenetic Risk Status at Baseline

Avet-Loiseau H, et al. Blood. 2016;128(9):1174-1180.

ELOQUENT-2 (Elo-Rd vs Rd): PFS in del(17p) and t(4;14)

High risk defined by: t(4;14) or t(14;16) or with del(17p) in ≥1% of plasma cells (PCs) Moreau P, et al. *Blood.* 2015;126: Abstract 727.

TOURMALINE-MM1: Outcomes By Cytogenetic Risk Group

	O	RR, %	≥VC	GPR, %	≥(CR, %	Me	dian PFS, M	onths
	IRd	Placebo- Rd	IRd	Placebo- Rd	IRd	Placebo- Rd	IRd	Placebo- Rd	HR
All patients	78.3*	71.5	48.1*	39	11.7*	6.6	20.6	14.7	0.742*
Standard-risk patients	80	73	51	44	12	7	20.6	15.6	0.640*
All high-risk patients	79*	60	45*	21	12*	2	21.4	9.7	0.543
Patients with del(17p) [†]	72	48	39	15	11*	0	21.4	9.7	0.596
Patients with t(4;14) alone	89	76	53	28	14	4	18.5	12.0	0.645

**P*<.05 for comparison between regimens. [†]Alone or in combination with t(4;14 or t(14;16) Data not included on patients with t(14:16) alone due to small numbers (n = 7)

- In the IRd arm, median PFS in high-risk patients was similar to that in the overall patient population and in patients with standard-risk cytogenetics
- High risk was defined by t(4;14) or t(14;16) or del17p in ≥5% of PCs

VGPR, very good partial response Moreau P, et al. *Blood.* 2015; 126: Abstract 727.

Kd vs Vd: PFS By Cytogenetic Risk Status at Baseline (Kd is not a good option for high-risk cytogenetics)

<u>High Risk</u>	Kd n = 97	Vd n = 113		
PFS, median months (95% CI)	8.8 (6.9–11.3)	6.0 (4.9–8.1)		
HR (95% CI)	0.646 (0.453–0.921)			
<i>P</i> value	.0075			

Standard Risk	Kd n = 284	Vd n = 291		
PFS, median months (95% CI)	NE (18.7–NE)	10.2 (9.3–12.2)		
HR (95% CI)	0.439 (0.333–0.578)			
<i>P</i> value	<.0001			

Chng WJ, et al. Leukemia. 2017;31(6):1368-1374.

What Would Your Preferred Regimen Be at Relapse?

- According to previous lines of therapy
- If the patient has refractoriness to PIs or IMiDs?
- If the patient has high-risk cytogenetics ?
- If the patient is elderly?

Impact of Age on Treatment Strategy

		HR (95% CI)					
	< 65y	0.4 (0.24-0.65)					
	≥ 65 y	0.4 (0.24 - 0.67)					
	< 75y	0.66					
ASPINE (KNU VS NU)	≥75 y ———————————————————————————————————	0.73					
	< 75y	0.76 (0.62 - 0.94)					
	≥75 y	0.59 (0.38 - 0.91)					
TOURMALINE (IDd vs Dd)	< 65y ———————————————————————————————————	0.68					
TOORIVIALINE (IRd VS Rd)	≥ 65-75 y	0.83					
	< 75y	0.53					
	≥ 75 y	0.38					
	< 65y	0.44 (0.28 - 0.68)					
CASTOR (DVd VS Vd)	≥ 65 y	0.35 (0.22 - 0.57)					
	<						
← Favors novel-agent							
¹ Stewart AK, et al. N Engl J Med 2015;372:142–52; ² Dimopoulos MA, et al. Lancet Oncology 2016; 17: 27-38; ² Lonial S et al, NEJM 2015 Aug 13;373(7):621-31; ⁴ Moreau P, ASH 2015 abst 727; Dimopoulos MA, et la. NEJM 2016; Palumbo A et al, NEJM 2016.							

Courtesy of: San Miguel J

Selected Toxicity of New Combinations % of Patients With Grade 3 or 4 Toxicity

TRIAL	ASPIRE (KRd)	TOURMALINE- MM1 (IRd)	ELOQUENT-2 (EloRd)	POLLUX (DRd)	ENDEAVOR (Kd)	CASTOR (DVd)
Peripheral neuropathy	3%	2%	NA	NA	2%	5%
Acute renal failure	3%	3%	NA	NA	5%	NA
Cardiac toxicity	7%	6%	NA	NA	8%	NA
Pneumonia/ infections	2%	1%	NA	10%	8%	11%
Diarrhea	4%	6%	5%	5%	3%	4%

Brioli A, et al. Expert Rev Hematol. 2017;10(3):193-205. Moreau P, et al. N Engl J Med. 2016;374(17):1621-1634.

Toxicity and Convenience of Newer Agents for Relapsed Myeloma

Agent	Carfilzomib ¹	Elotuzumab ²	lxazomib ³	Daratumumab ⁴
Neutropenia	++	-	++	+
Thrombocytopenia	++	-	++	+
Hypertension	++	-	-	-
GI toxicity	+	-	++	+
Neuropathy	Occasional	-	+	-
Dyspnea/cough	++	-	-	+
Infusion reactions	+/-	+	-	+++
DC due to toxicity	15%	17%	8.7%	7%
Administration	6x/month IV	q 1 to 2 weeks IV	PO	IV q w x 8; q 2 w x 8; q 4 w

DC, discontinued; GI, gastrointestinal

1. Moreau P, et al. *Blood*. 2015;126: Abstract 72. 2. Lonial S, et al. *N Engl J Med*. 2015;373(7):621-631. 3. Moreau P, et al. *Blood*. 2015;126: Abstract 72. 4. Dimopoulos M, et al. *Haematologica*. 2016;101(Suppl 1): Abstract S456.

New Options for First Relapse? How To Increase the Frequency of MM-Reactive T Cells?

Efficacy of T-Cell Redirection Strategies (Bites, CAR T-Cells) Also Seems to Correlate With The Number of Previous Therapies And Tumor Load

Topp MS, et al. J Clin Oncol. 2014;32(26):4134-4140. Topp MS, et al. Lancet Oncol. 2015;16(1):57-66. Kantarjian H, et al. N Engl J Med. 2017;376(0):836-847.

Long-Term Disease Control by Bispecific Antibodies Depends on Pre-treatment

 Inspite of a similar MRD clearance rate (78 vs 80%) patients who had already relapsed before had an inferior EFS/OS compared with those treated in first line for MRD+

 Thus, if redirection T-cell strategies should be curative – they should be applied in earlier treatment lines !!!

- 62-yr old woman with anemia and T12 compression fracture
- IgGλ MM with 45% marrow plasma cells, del13q, elevated LDH
- Treated with VRD induction, ASCT, and lenalidomide maintenance x 1 year, CR
- 3.5 years later, M-protein reappeared and increased slowly without detectable myeloma-related organ damage and no new cytogenetic changes
- Patient has good performance status and desires therapy

What treatment would you recommend?

- **1. Second ASCT without maintenance**
- 2. Lenalidomide + dexamethasone (Rd)
- 3. Carfilzomib + dexamethasone
- 4. Cyclophosphamide + bortezomib + prednisone or dexamethasone
- 5. Monoclonal antibody (elotuzumab or daratumumab) + Rd
- 6. Lenalidomide + bortezomib + dexamethasone

Treatment of Relapsed Myeloma Potential Strategies

- Start all patients on a triplet regimen
 - All phase III trials have shown superiority of including a 3rd newer agent with either len + dex or BTZ + dex^{4,5}
- Start selected patients on a doublet such as len + dex
 - Elderly/frail patients may tolerate doublet > triplet^{1,2}
 - Some patients do very well with len + dex doublet
 - 14% of relapsed patients had a PFS ≥6 years in Mayo Clinic review, but could not be identified ahead of time³
 - Can add a third agent only "on demand" at next relapse
 - Limited data suggests efficacy; could reduce toxicity/cost
- In the future, novel immunotherapies are moving in earlier lines of treatment, also in first relapse

1. Larocca A, et al. *Leukemia*. 2016;30(6):1320-1326. 2. Magarotto V, et al. *Blood*. 2016;127(9):1102-1108. 3. Nijhof IS, et al. *Blood*. 2016;128(19):2297-2306. 4. Alahmadi M, et al. *Blood*. 2015;126: Abstract 1842. 5. Kaedbey R, et al. *Blood*. 2015;15(Suppl 3):e298.

Thanks For Your Attention!

Treatment Decisions for Relapsed/Refractory Multiple Myeloma:

Fitting the Pieces Together

