

How Do I Choose? Treatment Decisions After Multiple Lines of Therapy

Meletios A. Dimopoulos, MD University of Athens, School of Medicine Athens, Greece

Management of Relapsed Myeloma

- Despite progress in the management of newly diagnosed patients with myeloma, virtually all patients eventually relapse
- Relapses vary clinically and may
 - Be biochemical only
 - Involve light chain escape or nonsecretory pattern
 - Involve extramedullary sites
- Optimal management still depends on judicious use of sequential regimens

Treatment of Relapsed Myeloma Considerations

- Previously, many patients received fixed-duration bortezomib-based regimens, or, as part of first-line therapy
 - VTD, RVD, or CyBorD induction followed by ASCT if younger and fit
 - Rd or VMP if transplant-ineligible
- In the United States, initial therapy often consists of RVD
 - Some younger transplant-eligible patients may have deferred ASCT
- More patients are progressing while on continuous therapy
 - Lenalidomide maintenance after ASCT is standard of care
 - Wider availability of lenalidomide + dexamethasone for elderly patients
 - Bortezomib maintenance used in selected settings
 - Lenalidomide or proteasome inhibitor-based therapies are used continuously in relapsed/refractory myeloma

Patient Case

- 65-year-old man with anemia and extensive lytic bone in disease in 2014
 - IgG lambda myeloma with 35% marrow plasma cells
 - FISH cytogenetics positive only for del 13q but LDH was high → R-ISS II
 - Treated with VTD induction (4 cycles), ASCT and lenalidomide maintenance (10 mg/d)
 - CR achieved 4 months after starting maintenance therapy, but MRD (+)
- M-protein reappeared 1½ years later and increased slowly without detectable myeloma-related organ damage
 - After a discussion of observation versus active therapy, patient wishes to defer therapy as long as possible
 - 3 months later, he becomes concerned from the monthly continuous increase (from 7 g/L to 11 g/L and 13 g/L) and decided to receive Rd (no Rd-based therapies were available in 2016)
 - Patient achieved a PR after 3 cycles of therapy and continued on Rd
- Clinical relapse with anemia developed 19 months later; M-protein 32 g/L

Patient case: What treatment would you advise for this patient?

- 1. Add a third drug to Rd
- 2. Bortezomib plus dexamethasone (VD)
- 3. Carfilzomib + dexamethasone (K56d)
- 4. Pomalidomide + low dose dexamethasone
- Daratumumab + bortezomib + dexamethasone (DaraVd)
- 6. Cyclophosphamide, thalidomide, dexamethasone (CTD)

Factors in Choice of Treatment

Patient-Related

- Age
- Comorbidities
 - Peripheral neuropathy
 - Renal insufficiency
 - Diabetes
- Bone marrow reserve
- Frailty
- Mobility
- Social factors
- Patient preference
- Drug availability

Disease-Related

- Biology of myeloma
 - Cytogenetics
 - ? Mutational profile
- Extramedullary disease
- Pace of relapse
 - Biochemical only
 - Indolent
 - Aggressive
- Site of relapse

Treatment-Related

- Initial therapy
- Toxicity profile
- Refractoriness
- Dosing schedule
- Route of administration

Treatment of Relapsed Myeloma

Progress in Therapeutic Options

- FDA has approved 5 new drugs for relapsed myeloma
 - 2 proteasome inhibitors: Carfilzomib and ixazomib
 - 2 monoclonal antibodies: Daratumumab and elotuzumab
 - 1 HDAC inhibitor: Panobinostat

New/oral proteasome inhibitors

- Carfilzomib
- Ixazomib
- Oprozomib

Monoclonal antibodies

- Elotuzumab
- Daratumumab
- · Isatuximab

Kinase inhibitors

- Vemurafenib
- Afuresertib
- Dinaciclib
- •PIM (LGH447)
- Trametinib

HDAC inhibitors

- Panobinostat
- Ricolinostat

Novel mechanisms

- Venetoclax
- Selinexor
- Nutlins
- •TTI-621-01
- MCL-1 inhibitor

Immunotherapies

- Pembrolizumab
- Nivolumab
- Durvalumab
- ·CAR T cells
- BITEs

Addition of 3rd Agent to Lenalidomide at the Time of Progression While on Rd

- Addition of low-dose cyclophosphamide to len + steroids at the time of next relapse
 - PFS 12 months when 50 mg daily added (prospective Dutch trial)¹
 - PFS 7 months when 500 mg weekly added (retrospective PMCC study)

Dutch Trial¹

Princess Margaret Cancer Centre Data²

Addition of clarithromycin extended PFS by 5 months in another PMCC study³

Novel Agents-Based Therapies: PFS According to Previous Lines of Therapy

1.5

0.5

Favors novel-agent

1.0

Conclusions cannot be drawn from cross trial comparisons as aspects of the study designs and patient populations may be different

POLLUX: Moreau P, et al. *Blood.* 2017;130: Abstract 1883. **ASPIRE:** Dimopoulos MA, et al. *Blood Cancer J.* 2017;7(4):e554. **ELOQUENT-2:** Dimopoulos MA, et al. *Br J Haematol.* 2017;178(6):896-905. **TOURMALINE-MM1:** Mateos MV, et al. *Haematologica.* 2017;102(10):1767-1775. **ENDEAVOR**: Dimopoulos MA, et al. *Lancet Oncol.* 2016;17(1):27-38. **CASTOR**: Spencer A, et al. *Blood.* 2017;130: Abstract 3145.

^{*} One patient in the Vd group received four previous regimens

Regimens for R/R MM After 1-3 Prior Lines

Based on previous exposure or refractoriness to bortezomib or lenalidomide (according to inclusion/exclusion criteria of respective studies)

		KRD	KD	Elo-RD	IRD	DRd	DVd	Pano-VD
Bortezomib	Exposure	+	+	+	+	+	+	+
	Refractoriness	-	-	+	-	+	-	-
Lenalidomide	Exposure	+	+	+	+	+	+	+
	Refractoriness	-	+	-	-	-	+	+

ENDEAVOR: Progression-Free Survival By Prior Bortezomib and Lenalidomide

	Prior Bortezo	mib Exposure		alidomide osure	Lenalidomide-Refractory		
	Kd (n = 250)	Vd (n = 252)	Kd Vd 2) (n = 177) (n = 177)		Kd Vd (n = 113) (n = 122)		
Median follow-up in ITT, months	11.9	11.1	11.9	11.1	11.9	11.1	
Median PFS, months	15.6	8.1	12.9	7.3	8.6	6.6	
Hazard ratio (95% CI)	0.56 (0.44–0.73; <i>P</i> <.0001)		_	69 ; <i>P</i> = .0052)	0.80 (0.57–1.11)		

CASTOR: Progression-Free Survival By Prior Treatment Exposure

	Prior Bortezo	mib Exposure	Lenalidomide-Refractory		
	DVd (n = 162)	Vd (n = 164)	DVd (n = 45)	Vd (n = 60)	
Median follow-up in ITT, months	13	3.0	13.0		
Median PFS, months	12.3	6.7	10.3	4.4	
Hazard ratio (95% CI)	0.4 (0.32 – 0.66	46 ; <i>P</i> <.0001)	0.37 (0.21–0.65; <i>P</i> = .0004)		

Retreatment With IMiDs: TTP

Retrospective study

- Median of 2 treatments prior to IMiD based salvage therapy
- Median time from diagnosis to repeat exposure to IMiD: 28 months

N = 140	Len → Len	Len → Thal	Thal → Len	Thal → Thal
	n = 48	n = 11	n = 58	n = 23
ORR (≥PR) to repeat IMiD therapy	54%	20%	48%	30%

- Repeat therapy with IMiDs feasible
- Response rates with lenalidomide retreatment higher than with repeat thalidomide administration

Lenalidomide followed by lenalidomide = 16 months, thalidomide followed by lenalidomide = 9 months, thalidomide followed by thalidomide = 6 months, and lenalidomide followed by thalidomide = 3 months

Overall, the median time to progression for the entire study

IMiD, immunomodulatory drug; Len, lenalidomide; ORR, overall response rate; PR, partial response; Thal, thalidomide; TTP, time to progression Madan S, et al. *Blood.* 2011;118(7):1763-1765.

MM-003: Response By Prior Treatment in the POM + LoDEX Arm

Pomalidomide Plus Bortezomib and Dexamethasone

Pom: 4 mg/d, **days 1-21 Bor:** 1.3 mg/m (IV or SC) weekly **Dexa**: 40 mg weekly After 8 cycles, maintenance with Pom single-agent

- 50 patients with relapsed, lenalidomide refractory multiple myeloma. Median prior lines of therapy: 2 (1-5)
- 26% were len-refractory as last line of therapy
- ORR: 86%, including 22% sCR/CR and 28% of VGPR
- ORR of 100% in patients with del17p

Safety profile: ≥G3 neutropenia (70%), lung infection (10%), and PN (4%)

Rationale for a phase III trial OPTIMISMM: Vd +/- Pomalidomide

Paludo J, et al. *Blood.* 2017;130(10):1198-1204.

A Phase II Study of Pom/Cyclo/Dex vs Pom/Dex for R/R MM

Arm B: Pom/LowDexa; Arm C: Pom/LowDexa +Cyclo (400 mg PO day 1, 8, 15)

Daratumumab Monotherapy ORR By Subgroup: Sirius Trial

Pomalidomide + Daratumumab + Dex

MMY1001 phase 1b study: daratumumab + POM-D in RRMM: PFS and ORR

- Among patients with CR or better, the MRD negative rate at:
 - 10⁻⁴ threshold = 6/17 (35%)
 - 10⁻⁵ threshold = 5/17 (29%)
 - 10⁻⁶ threshold = 1/17 (6%)

~40% of patients maintain PFS after 1 year Deep responses were observed with DARA + POM-D MMY1001: daratumumab + POM-D: OS

Patients with SD/MR derive survival benefit with DARA + POM-D

16 June 2017: FDA approved DARA+POM-D for MM patients with ≥ 2 prior lines of therapy including a PI & LEN

- Patients: RRMM, ≥1 prior line of therapy (IMiD and PI; len-refractory if only 1 prior regimen), ≥PR on prior therapy, PD on/after last regimen
- Exclusion criteria included prior anti-CD38 mAb or pomalidomide

Primary endpoint: PFS

N=354 APOLLO STUDY DARATUMUMAB + POMALIDOMIDE + DEXAMETHASONE POM-dex POMALIDOMIDE + DEXAMETHASONE

Cycle length = 28 days
Treatment until progression or unacceptable toxicity

Usmani SZ, et al. *Haematologica*. 2017;102(s2): Abstract P676. Chari A, et al. *Blood*. 2017;130:974-981. National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT03180736. Accessed: April 17, 2018.

Pomalidomide + Elotuzumab + Dex ELO-3: Phase II Study Design

Cycle 1 and 2

Pomalidomide: 4 mg PO daily (days

Cycle 3 and Beyond

Control Arm

Elotuzumab

Arm

R

Ν

D

0

1-21) of each cycle

Dexamethasone:

 40 mg PO per day (days 1, 8, 15, 22) of each cycle (subjects ≤75 years old)

 20 mg PO per day (days 1, 8, 15, 22) of each cycle (subjects >75 years old)

Elotuzumab: 10 mg/kg IV (days 1, 8, 15, 22) of each cycle

<u>Pomalidomide:</u> 4 mg PO daily (days 1-21) of each cycle

Dexamethasone:

- 28 mg PO + 8 mg IV on days of elotuzumab dosing (subjects ≤75 years old)
- 8 mg PO + 8 mg IV on days of elotuzumab dosing (subjects >75 years old)

<u>Pomalidomide:</u> 4 mg PO daily (days 1-21) of each cycle

Dexamethasone:

- 40 mg PO per day (days 1, 8, 15, 22) of each cycle (subjects ≤75 years old)
- 20 mg PO per day (days 1, 8, 15, 22) of each cycle (subjects >75 years old)

<u>Elotuzumab:</u> 20 mg/kg IV day 1 of each cycle <u>Pomalidomide:</u> 4 mg PO daily (days 1-21) of each cycle

<u>Dexamethasone (weeks with elotuzumab dosing):</u>

- 28 mg PO + 8 mg IV on day of elotuzumab dosing (subjects ≤75 years old)
- 8 mg PO + 8 mg IV on day of elotuzumab dosing (subjects >75 years old)

<u>Dexamethasone (weeks without elotuzumab dosing):</u>

- 40 mg PO per week (subjects ≤75 years old)
- 20 mg PO per week (subjects >75 years old)

Follow-Up

Follow-up
every 4 weeks
for tumor
response until
PD; then
survival followup every 12
weeks or more
frequently

National Institutes of Health. http://clinicaltrials.gov/ct2/show/NCT03030261. Accessed: April 17, 2018.

Other Novel Regimens

Updated data from a dose-finding phase II trial of single agent isatuximab (anti-CD38 mAb) in relapsed/refractory multiple myeloma

Median time to first			
response, mo	2 (0.8–2.1)	0.9 (0.9–1)	1.35 (0.9–2.8)
Median time to best	3 (0.9–12.9)	4.6 (0.9–12.9)	1.35 (0.9–2.8)
response, mo	5 (0.8-12.8)	4.0 (0.5-12.5)	1.55 (0.5-2.0)

PFS at ≥10 mg/kg

OS, overall survival Martin T, et al. *Blood.* 2016;128: Abstract 509.

OS at ≥10 mg/kg

Isatuximab Plus Pomalidomide and Dexamethasone

- Patients:
 - ≥2 prior lines of therapy
 - Failed treatment with lenalidomide and a PI alone or combination
 - Refractory to last line of treatment
 - Pomalidomide naive
- Primary endpoint: PFS
- Secondary endpoints include:
 - ORR, OS, TTP, PFS in high risk cytogenetic population, DoR, Safety, QoL

STORM Study: Selinexor Plus Dex in Patients With R/R MM

78 patients after a median of 7 prior lines of therapy: 48 patients quad refractory (bor, carf, len, & pom) and 30 penta refractory (bor, carf, len, pom, & CD38 mAbs)

Category	N*	ORR (%)	CBR (%)	VGPR (%)	PR (%)	MR (%)	SD (%)	PD (%)	NE (%)
Overall	78	16 (21%)	26 (33%)	4 (5%)	12 (15%)	10 (13%)	27 (35%)	9 (12%)	16 (21%)
Quad Refractory	48	10 (21%)	14 (29%)	2 (4%)	8 (17%)	4 (8%)	21 (44%)	4 (8%)	9 (19%)
Penta Refractory	30	6 (20%)	12 (40%)	2 (7%)	4 (13%)	6 (20%)	6 (20%)	5 (17%)	7 (23%)
6 Doses/ Month	51	10 (20%)	15 (29%)	3 (6%)	7 (14%)	5 (10%)	21 (41%)	4 (8%)	11 (22%)
8 Doses/ Month	27	6 (22%)	11 (41%)	1 (4%)	5 (19%)	5 (19%)	6 (22%)	5 (19%)	5 (19%)

Median DoR: 5 months; Median PFS: 2.3 months; Median OS: 9.3 months

Main toxicities are thrombocytopenia (59% grade 3/4) and neutropenia (17% grade 3/4), anemia (28% grade 3/4), fatigue (15% grade 3/4), which are manageable with dose modifications

Vogl DT, et al. *Blood.* 2016:128: Abstract 491.

^{*1} patient did not have measurable disease at baseline. Selinexir 80 mg oral + Dex 20 mg, twice daily

Phase I Study of Selinexor + Bortezomib + Dex

100 mg oral q w + 1.3 mg/m² SC q w x 4 / 5 + 40 mg q w

• 44 patients: 22 in the dose escalation and 20 in the expansion cohort. Median PL: 3 (1-11)

R/R MM after at least 1PL: Prior PI exposure allowed, but no bz refractory in the last line

of therapy _____

Best Responses [†] in Evaluable SVd Patients as of November 15 th , 2017										
Category	N*	ORR (%)	CBR (%)	CR (%)	VGPR (%)	PR [‡] (%)	MR (%)	SD (%)	PD (%)	
PI Relapsed or Naïve	19	16 (84%)	16 (95%)	2 (11%)	5 (26%)	9 (47%)	2 (11%)	1 (5%)		
PI Refractory	21	9 (43%)	14 (67%)	1 (5%)	4 (19%)	4 (19%)	5 (24%)	6 (29%)	1 (5%)	
PI Relapsed or Naïve, ≤ 3 Prior Treatments (BOSTON**)	18	15 (83%)	16 (89%)	2 (11%)	6 (33%)	7 (39%)	1 (6%)	2 (11%)		

- ORR of 83% in PI relapsed or naïve MM with 1-3PL compares favorably to the ORR of 63% reported for VD in previous trials
- In patients with PI refractory MM, ORR of 43% and CBR of 67% support preclinical findings that selinexor resensitizes and overcomes PI-resistance
- AEs were manageable (mostly grade 1/2) and included nausea, fatigue, anorexia, and thrombocytopenia. PN in only 6 patients
- Grade 3/4 AEs: Thrombocytopenia (40%), neutropenia (19%), and anemia (12%)

Rationale for the BOSTON, phase III trial: Vd +/- Selinexor

Venetoclax Monotherapy: Phase I in Patients With R/R MM (for t11;14 Patients)

30 mg to 1200 mg oral admin (MTD: 1200 mg)

66 patients after a median of 5 prior lines of therapy: 79% refractory to last line of therapy; 61% double refractory to bor and len

Main toxicities are thrombocytopenia (26% grade 3/4) and neutropenia (21% grade 3/4); serious AEs: Pneumoniae (8%) and sepsis (5%)

Higher ORR (88% vs 20%) were seen in patients with a high BCL2:BCL2L1 ratio regardless of t(11;14)

- 20 patients with t(11;14) after a median of 3 prior lines of therapy received venetoclax at dose of 800 mg daily plus dexamethasone 40 mg weekly. The ORR was 65% including 7 patients in VGPR and 6 patients in PR
- The 6-month TTP was 64%

Kumar S, et al. *Blood*. 2017;130(22):2401-2409.

GSK2857916: BCMA-ADC in MM (1)

- Humanized IgG1 anti-BCMA antibody conjugated to monomethyl auristatine-F
- BCMA is restricted to B cells at later stages of differentiation, broadly expressed on malignant PC

Mechanisms of Action:

- ADC mechanism
- ADCC mechanism
- Immunogenic cell death
- BCMA receptor signalling inhibition

N = 30 patients with MM at escalating doses At high doses ≥3.4 mg/kg (n = 10) **ORR 67%** 70% ≥5 prior lines

GSK2857916: BCMA-ADC in MM (2)

- 35 patients received the BCMA-ADC at dose of 3.4 mg/kg IV in 1-hour infusion without premedication and every 3 weeks
- 57% of them had received at least 5 PL of therapy
 - 97% PI refractory
 - 91% IMiD refractory
 - **30%** Dara refractory

Q1 (95% CI)

Q3 (95% CI)

Median (95% CI)

Number of subjects 35 Progressed or died 15 (43%) Censored, f/u ended 3 (9%) Censored, f/u ongoing 17 (49%)

Progression-free survival, months 2.3 (0.7, 6.8) 7.9 **)**3.1, -)

- Response sustained in the different subgroups of patients
- Dara-treated, ORR of 43%
- Safety profile: Corneal events in 63% grade 1/2, thrombocytopenia in 34%

Trudel S, et al. *Blood.* 2017:130: Abstract 741.

Patient Case

- 65-year-old man with anemia and extensive lytic bone in disease in 2014
 - IgG lambda myeloma with 35% marrow plasma cells
 - FISH cytogenetics positive only for del 13q but LDH was high → R-ISS II
 - Treated with VTD induction (4 cycles), ASCT, and lenalidomide maintenance (10 mg/d)
 - CR achieved 4 months after starting maintenance therapy, but MRD-positive
- M-protein reappeared 1½ years later and increased slowly without detectable myeloma-related organ damage
 - After a discussion of observation versus active therapy, the patient wishes to defer therapy as long as possible
 - 3 months later, he becomes concerned from the monthly continuous increase (from 7 g/L to 11 g/L and 13 g/L) and decided to receive Rd (no Rd-based therapies were available in 2016)
 - Patient achieved a PR after 3 cycles of therapy and continued on Rd
- Clinical relapse with anemia developed 19 months later; M-protein 32 g/L

Patient case: What treatment would you advise for this patient?

- 1. Add a third drug to Rd
- 2. Bortezomib plus dexamethasone (VD)
- 3. Carfilzomib + dexamethasone (K56d)
- 4. Pomalidomide + low dose dexamethasone
- 5. Daratumumab + bortezomib + dexamethasone (DaraVd)
- 6. Cyclophosphamide, thalidomide, dexamethasone (CTD)

Patient Case

- 65-year-old man with relapsed myeloma
 - Intensification with lenalidomide could be an option for biochemical relapsing patients while on lenalidomide maintenance but phase III data are missing; our patient had a clinical relapse
 - Bortezomib retreatment is inferior to K56d
 - K56d: A suitable option for lenalidomide refractory patients, although best results are shown at second line
 - PomDex: Good results in lenalidomide refractory patients; possibly a third agent is needed for best results in this young and fit patient
 - DaraVd: A suitable option for lenalidomide refractory patients with PFS advantage over Vd
 - CTD: Very poor results after lenalidomide failure
 - However, both K56d and DaraVd have shown inferior results in patients who are lenalidomiderefractory compared to the whole population in ENDEAVOR and CASTOR studies

Relapsed Myeloma Summary and Conclusions

Challenges

- Patients and myeloma biology are heterogeneous
- Choices in many countries may be limited by availability
- Choice of treatment in patients who have been exposed to both bortezomib and lenalidomide and mainly in those refractory to those agents remain a challenge
- Triplet regimens are generally preferred in this high-risk population, although results from phase III are limited
 - Exceptions may include elderly, frail patients
 - Certain patients do well with the pom + dex doublet only, and future efforts to identify them are desirable
 - The strategy of adding a 3rd agent only "on demand" is of interest but has not been tested in phase III studies

Relapsed Myeloma Summary and Conclusions

- Efforts to improve quality of life of patients on these newer regimens are ongoing
 - Weekly carfilzomib
 - Subcutaneous daratumumab
- The field will change again with the maturity of the next phase III studies, as the newer triplets are being evaluated in the following settings:
 - As first-line therapy
 - With pomalidomide rather than lenalidomide

Relapsed Myeloma Summary and Conclusions

- Future directions for relapsed myeloma include
 - Targeted therapy
 - Venetoclax for t(11;14)
 - FGFR3 inhibitors for t(4;14)
 - Nutlins for del 17p
 - New drug classes (eg, selinexor)
- Immunotherapy will have a large impact on patient management
 - Integration of immunotherapy into all phases of therapy is likely
 - Conjugated monoclonal antibodies
 - Optimal use of checkpoint inhibitors
 - BITEs
 - CAR T cells

Treatment Decisions for Relapsed/Refractory Multiple Myeloma:

Fitting the Pieces Together

