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Summary: The multiple myeloma treatment landscape has changed dramatically. This change, paralleled by an 
increase in scientific knowledge, has resulted in significant improvement in survival. However, heterogeneity 
remains in clinical outcomes, with a proportion of patients not benefiting from current approaches and continu-
ing to have a poor prognosis. A significant proportion of the variability in outcome can be predicted on the basis 
of clinical and biochemical parameters and tumor-acquired genetic variants, allowing for risk stratification and 
a more personalized approach to therapy. This article discusses the principles that can enable the rational and 
effective development of therapeutic approaches for high-risk multiple myeloma.

PERSPECTIVE

CHALLENGES IN THE MANAGEMENT OF 
HIGH-RISK MULTIPLE MYELOMA

The number of treatments available for patients with mul-
tiple myeloma has increased over the last two decades. These 
therapies have been incorporated into the current optimum 
therapeutic approach that uses cassettes of treatment com-
prising synergistic non–cross-reacting agents given as induc-
tion, consolidation, and maintenance phases. The aim of this 
strategy is to overcome clonal heterogeneity, reducing the 
malignant clone to minimal levels and thereby maximizing 
progression-free survival (PFS) and overall survival (OS).

However, there remains considerable heterogeneity in out-
come, with some patients having a good prognosis while 

others fail to respond or relapse quickly and progress rapidly 
to death. Interestingly, it is the low-risk segment of disease 
that has seen the most significant improvement in survival. 
In contrast, poorest outcomes have changed minimally for 
patients in the high-risk (HR) segment. This is particularly 
important to address as it imposes a significant burden on 
both patients and caregivers, negatively impacting quality of 
life, psychosocial well-being, and survival.

Current expert opinion suggests that a reasonable bench-
mark for the definition of survival of this segment is a 
median OS of less than 3 years (1). To improve this, we need 
to improve our capacity to identify cases at presentation, and 
move from the current one-size-fits-all therapeutic approach 
to a personalized risk-stratified approach (2). Taking this 
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approach will enable appropriate prognostic information to 
be discussed with the patient and allow the optimization of 
therapy for an individual patient, thus leading to better psy-
chologic well-being and improved survival.

A risk-stratified approach is feasible based on the use of clini-
cal and biochemical parameters and tumor-acquired genetic  
variants. Current multiple myeloma staging systems, how-
ever, lack sensitivity and specificity for use in individual 
patient risk stratification and could be improved and more 
widely implemented. In this article, we discuss data support-
ing multiple myeloma risk stratification, current therapeutic 
approaches for HR disease, and set out the principles for 
future developments in this area.

THE BIOLOGY OF HIGH-RISK DISEASE
It is essential to understand the biology of HR disease to 

design and implement successful therapeutic approaches. 
HR multiple myeloma (HRMM) is an acquired biological 
trait that is mediated by more than one biological mecha-
nism and leads to a phenotype of increased proliferation, 
resistance to apoptosis, and bone marrow–independent cell 
growth. It is associated with loss of G1–S checkpoint transi-
tion as a consequence of deletion of CDKN2C or RB1. Bial-
lelic inactivation of TP53 explains resistance to cytotoxic 
chemotherapy in some cases (3, 4). Associated epigenetic 
factors include overexpression of PHD finger protein 19 
(PHF19), which controls a master transcriptional program 
associated with cell-cycle progression, the integrity of mito-
sis, and the structural integrity of the multiple myeloma 
genome (5). This effect is mediated, at least in part, via aber-
rant control of the PRC2 complex and alterations in H3K27 
tri-methylation, and is influenced by EZH2 (6). A number 
of recent publications have also identified a role for the HR 
microenvironment, but this remains difficult to quantitate 
at a cellular level (7–9).

Translocations involving chromosome 14 and expression  
of cyclin D genes have been used to segment multiple 
myeloma into 7 biologically distinct segments [the Trans-
location-Cyclin D (TC) classification; ref.  10]. Three com-
mon translocations segments are considered HR, t(4;14), 
t(14;16), and t(14;20), which have their biology defined by the 
increased expression of NSD2, MAF, and MAFB, respectively. 
Interestingly, not all cases within these adverse translocation 
subgroups have poor outcomes, suggesting that additional 
driver events are required for HR behavior. If the GEP70 
(described below) is used to identify HR cases, 21% of cases 
are derived from t(4;14), 18% from t(14;16), 42% from a more 
proliferative (PR) group, and the remaining cases from the 
other biological segments. Thus, HR behavior is an acquired 
characteristic reflecting the deregulation of a common set of 
genes that can occur in any TC segment, but is more likely to 
occur in the adverse translocation and cyclin D2–expressing 
segments. Many of the genes forming the GEP70 are situated 
on 1q (11), an area of recurrent gain and amplification point-
ing to its importance in HR.

One characteristic feature of HR disease is the presence 
of focal lesions within the bone marrow. Genetic analysis of 
these lesions has identified intraclonal heterogeneity that 
increases at relapse and drives disease progression. This has 

led to a model of multiple myeloma progression based on 
Darwinian biology and selective sweeps of better adapted 
higher risk subclones (12). Small proliferative HR subclones 
can be selected for by treatment, resulting in the emergence 
of resistant disease and early relapse, even following deep 
responses. Moving forward, successful strategies for manag-
ing HR disease need to overcome intraclonal heterogeneity, 
aiming for minimal residual disease (MRD)-negative states 
and clonal eradication.

FEATURES OF HIGH-RISK DISEASE
There are a number of clinical, laboratory, and genetic 

features that can be used to identify patients with HR disease 
biology (Box 1).

Clinical Features
The clinical definition of HRMM has evolved over time, 

with current data supporting the existence of two poor risk 
strata of patients: HR and ultra-HR (UHR; ref. 13). HR refers 
to a group of patients with a median OS of 3 to 5 years. 
These patients have a similar clinical course to standard-risk 
patients, but have a shorter PFS and OS. In contrast, UHR 
describes a group of patients with a median OS of 3 years 
or less with a number of distinct static and dynamic clinical 
features. These features include a high frequency of extra-
medullary disease (EMD; ref. 14), primary plasma cell leuke-
mia (PCL; ref. 15), being primary refractory to treatment (16), 
or initially responding to therapy but then relapsing within 
12 to 18 months and progressing rapidly to death (17).

Although, HR/UHR disease is associated with a number 
of pathologic features, many are difficult to quantify and 
are, therefore, not suitable as diagnostic criteria; for example, 
plasmablastic morphology (18). Aggressive subsets of disease 
often lack detectable bone disease, but this is too variable 
to be utilized clinically. Other potentially relevant clinical 
factors include elevated creatinine level (19) and frailty (20); 
however, these features reflect the capacity of the patient to 
tolerate treatment rather than defining intrinsic HR biology.

Laboratory Features
For many years the level of serum albumin and  β2-

microglobulin (B2M) as part of the International Staging 
System (ISS) has been the most widely used risk score (21). 
While the ISS is useful, it is neutral in respect to the biol-
ogy of the tumor and has low sensitivity and specificity for 
identifying individual patient risk. This deficit is illustrated 
when gene expression risk scoring (e.g., GEP70) is applied 
to the different ISS strata, as cases with HR behavior can be 
identified in the low-risk ISS strata (11). To improve upon 
ISS staging, additional genetic tests should be performed to 
identify patients at the highest risk.

Genetic Features
The systematic investigation of large trial datasets and 

application of new methodologies, e.g., next-generation 
sequencing (NGS), has resulted in refinements to the genetic 
definition of HR. Initial studies used metaphase cytogenetics 
and discovered that in many multiple myeloma cases, it was 
not possible to obtain metaphase spreads for examination. 
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The ability, therefore, to generate abnormal metaphase 
spreads per se is considered a poor prognostic factor (22). The 
presence of a complex karyotype and detection of monosomy 
13 on metaphase analysis are also poor prognostic factors; 
however, many characteristic myeloma markers initially iden-
tified by Southern blot are karyotypically silent [e.g., t(4;14)], 
leading to CD138-selected interphase FISH (iFISH) being the 
preferred test.

Purification of CD138+ plasma cells prior to iFISH analysis 
is critical to ensure robust results. Standard panels now include 
the identification of t(4;14), t(14;16), t(14;20), gain(1q), and 
del(17p) as adverse features. Importantly, large studies show 
that adverse features cosegregate, and that the presence of more 
than one adverse abnormality can be used to refine risk stratifi-
cation as part of a simple additive scoring system (23, 24).

The presence of t(4;14), t(14;16), and del(17p) have been 
incorporated into the ISS along with serum LDH level, to 
generate the revised ISS (R-ISS; ref. 25). At the time of 
developing this score, there was only limited access to large 
data sets that included data on the cut-off value for clonally 
positive cells carrying del(17p), the role of gain (3 copies) 
versus amplification of 1q (>3 copies) and the role of 1p loss; 
and as a consequence, important prognostic factors were 
not included. This deficiency has been addressed, at least in 
part, by the development of R2-ISS (26), R-ISS-1q (27) and a 
cytogenetic risk score that incorporates del(1p) and features 
relating to individual trisomies 5 and 21 (28). Current con-
sensus is that data on 1q should be included in the definition 
of HR disease; however, more data are required before 1p can 
be included.

There are a number of important subtleties associated with 
iFISH analysis that are often overlooked. These relate to the 

cut-off value of positive cells used to assign risk. In clinical 
practice, a positive result can be as low as 2% but this value 
does not necessarily reflect clinical HR where the percent-
age can vary between 10% and 60%. A number of trials show 
that levels greater than 50% are required to firmly assign UHR 
behavior for del(17p) (29, 30), and it is likely that similar fea-
tures are also important for 1q gain and amplification (4, 31). 
Thus, the percentage of cells positive for an iFISH signal needs 
to be addressed when using it for clinical risk assignment.

Functional Features
The continuous assessment of a number of markers dur-

ing therapy can add to the definition of risk (32). Patients 
developing progressive disease despite effective induction 
therapy should be considered as UHR. The size of this 
group is getting smaller with the addition of more effective 
combination therapy. The other group of patients that are 
considered UHR are those that obtain a good response and 
then relapse quickly. Relapse in these UHR cases often occurs 
between treatment phases; for example, between induction 
and autologous stem cell transplant (ASCT) especially if 
there is a delay in harvesting or ASCT, or between ASCT and 
maintenance during transplant recovery, at a time when the 
selective pressure on the clone is reduced.

The depth of response, attaining MRD negativity at 10−5 
or 10−6, and the stability of MRD-negative states over time 
(e.g., over a year) have prognostic significance (33). This is 
particularly important in patients with HR genetic features 
(34–38). Cases with a poor outcome are those who fail to 
attain MRD negativity; those that become MRD negative but 
do not sustain it have an intermediate outcome. Importantly, 
if MRD negativity is sustained and the patient reaches 5 years 

The challenges of HR disease
• HR disease is seen in up to 30% of NDMM.
• The proportion of patients with HR disease increases 

with each successive relapse.
• HR disease is a significant cause of mortality in multi-

ple myeloma.
• Current therapy has not significantly improved the 

outcome of HR.
The biology of HR disease

• HRMM is an acquired biological trait that is character-
ized by a phenotype of:
• increased proliferation rate
• resistance to apoptosis
• focal growth
• bone marrow–independent growth
• more than one type of biology
• intraclonal heterogeneity

• HR subclones may be selected for by treatment.
• Treatment needs to address intraclonal heterogeneity.

BOX 1: THE HIGH-RISK MULTIPLE MYELOMA DISEASE SEGMENT

Features of HR disease
• Clinical features

• extra-medullary disease
• large focal lesions
• plasma cell leukemia
• primary refractoriness to treatment

• Laboratory and genetic features
• R-ISS
• cytogenetic features

• t(4;14)
• t(14;16)
• t(14;20)
• gain(1q)
• deletion and mutation of TP53

• HR gene expression profiles
• Functional features

• Initial response to therapy with relapse within 
12–18 months.

• Novel features
• Microenvironment features identified by single-cell 

analysis and advanced imaging.
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follow-up, then long-term survival is a possibility (33, 39, 40). 
An area of active research is how computer-based artificial 
intelligence (AI) technologies may be able to estimate prog-
nosis for individual patients based on the clinical, laboratory, 
genetic, and functional features described above. The results 
of this type of study may allow a dynamic assessment of risk 
over time to be made.

High-Risk at Relapse
Compared to diagnosis, there is an increased frequency of 

mutation and structural variation associated with an increased 
prevalence of homozygous alterations involving genes such as 
TP53, RB1, and CDKN2C (41, 42). Applying the GEP70 prog-
nostic score at relapse shows that the number of cases with 
adverse risk-status increases with each subsequent relapse (43, 
44). In addition, at relapse, further dynamic clinical informa-
tion is available to aid therapeutic decision making including 
the duration of first remission and the rate of increase in the 
biochemical markers of relapse. Using this clinical information 
brings with it the potential to identify patients in a functional 
HR state where molecular markers of adverse outcome may 
be absent, but patients are clearly behaving in a HR fashion 
(45). Functional HR can be defined as cases relapsing within 
18 to 24 months of the start of initial therapy. Although this 
group contains patients with HR genetic abnormalities, it also 
includes a significant proportion of patients with standard-
risk genetics who would not otherwise have been identified as 
HR (46–48).

OPTIMIZING THE IDENTIFICATION  
OF HIGH-RISK DISEASE

A number of newer technologies are available that either 
alone or in combination with currently used tests can enhance 
our ability to detect HR disease.

Gene Expression Profiling
Expression-based prognostic scores can identify adverse 

risk behavior with a high degree of specificity. A number of 
tools have been developed including the GEP70 (11) and 
EMC92 (49), which identify 10% to 15% of NDMM as being 
UHR. In 2020, a “genome challenge” confirmed GEP70 as the 
most predictive measure of adverse outcome (5). The clinical 
use of approved GEP expression tests [EMC92 as “SKY92” 
(SkylineDx) and GEP70 as “MyPRS” (Quest diagnostics)], has 
been limited by reimbursement issues. Studies have suggested 
that the combination of a GEP signature together with the 
ISS outperforms other methods for identifying UHR cases 
(49, 50), and serve as a proof-of-principle that scoring systems 
that incorporate biological markers of risk are helpful.

Whole-Exome Sequencing
Mutational analysis by whole-exome sequencing  has dem-

onstrated the multiple myeloma mutational load falls at the 
median of the distribution of mutations in cancer in general 
(51–53). Some variation in mutational load between cases has 
been identified, particularly in the t(14;16) subgroup where 
an APOBEC signature was noted (54), as was an increase in 
load at the later stages of disease. High mutational load is 
associated with increased risk, but as this marker is associated 

with t(14;16), it is not clear which factor drives the increased 
risk. Mutations and somatic copy-number abnormalities 
have been recognized to comprise over 60 driver lesions (55). 
However, due to interactions between the different variants 
analyzed, only a limited number were identified as being 
significant for defining prognosis in multivariate analyses. 
The most significant genetic contributors were biallelic inac-
tivation of TP53 and 1q amplification in the context of ISS 
III, defined as “Double-Hit” multiple myeloma (4). Another 
study found that deletion of TP53 alone, without mutation, 
was also associated with poor outcome, but the patient series 
was preselected for HR patients with greater than 50% dele-
tion by FISH (30) and other studies vary (56). Datasets of 
patients with longer follow-up identified biallelic alterations 
in DIS3, and inactivating mutations in BRAF as being associ-
ated with poor outcome (57). Complex structural arrange-
ments and HR mutational profiles occur commonly in PCL 
cases even when traditional low-risk features such as t(11;14) 
or hyperdiploidy are present and may explain, at least in part, 
the aggressive nature of PCL (58).

Whole-Genome Sequencing
The application of whole-genome sequencing (WGS) 

extended the findings of exome-based studies and demon-
strated new potential clinically relevant genetic risk mark-
ers. Examples include complex structural events, the most 
prognostically significant of which is chromothripsis (59), 
an APOBEC mutational signature, and mutational load (60). 
WGS can also quantify copy number abnormalities and pre-
cisely map translocations, making it an excellent tool for 
ongoing discovery of genetic abnormalities. However, cur-
rently it is not appropriate for general clinical use due to a 
number of challenges including the complexity of analysis, 
data storage and cost. This situation is rapidly changing 
with the application of low-depth WGS for quantifying copy-
number changes and for detecting MRD.

Targeted Panels
Newer technologies provide the ability to determine rel-

evant translocation, copy number (common chromosomal 
myeloma gains/losses), and mutational data in one assay. 
Therefore, a number of targeted panels have been devel-
oped that are useful for risk determination and provide a 
cost-efficient method for use in the clinic (61–64). These 
assays include clinically-relevant regions of the genome for 
mutational analysis, including coding exons of genes that are 
important for risk stratification, prognosis, or as therapeutic 
targets. Appropriate panel design can also enable detection of 
copy-number abnormalities, regions of loss of heterozygosity 
(LOH), and copy-number neutral LOH. In addition, multiple 
myeloma–specific translocations can be detected through 
tiling of the IGH and MYC loci to detect any chromosomal 
translocation partner in an unbiased manner. Such panels 
will enable the 17p locus to be fully assessed (e.g., whether 
TP53 is biallelically inactive by combining copy number with 
mutation of TP53), allow the inclusion of frequent muta-
tions, for example, those in the RAS/MAPK pathway, and 
those associated with risk in univariate analyses. It is, there-
fore, possible to replace FISH, mutation analysis and karyo-
typing with a single targeted panel assay.
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Tumor purity obtained through CD138+ selection of sam-
ples is very important for these assays, as samples con-
taminated with normal cells lead to a loss of signal. Use of a 
patient–matched control DNA sample, saliva, or peripheral 
blood, is also crucial for the analysis. Panel analysis is simple 
and amenable to automated bioinformatic pipelines. Poten-
tial downsides include ensuring all the information required 
is captured within the initial panel design, and standardiza-
tion of content and sensitivity across platforms. Over time 
the sensitivity of methods to detect markers in the peripheral 
blood based on circulating tumor DNA (ctDNA) and cell-free 
DNA (cfDNA) will increase.

Imaging Analysis
Focal bone lesions are typical of multiple myeloma, and 

occur more frequently in HR cases; hence, their presence 
can help in the assignment of risk status. Functional imag-
ing including PET-CT (65) and MRI (66) quantification of 
the number, size, and intensity of focal lesions can enhance 
the definition of risk. In the clinic, functional imaging is 
currently used to reclassify cases of smoldering multiple 
myeloma to multiple myeloma that require therapy, proving 
the utility of the approach. For risk assignment in NDMM, 
it has been shown that greater than or equal to 3 large focal 
lesions or the presence of EMD is associated with an adverse 
prognosis (67). Genetic analysis of material from focal lesions 
within the same patient has shown the presence of spatial 
genetic heterogeneity with different lesions having either low 
or HR features; and if HR is present in the focal lesion, the 
patient follows a more clinical HR behavior (12).

Miscellaneous Analytic Approaches
A high plasma cell proliferative index (S-phase>2%) deter-

mined by cell-cycle analysis of DNA content by flow cytom-
etry at diagnosis is a poor prognostic factor independent of 
R-ISS stage and age, but is not widely used (22, 68). The pres-
ence of circulating plasma cells is also known to have prog-
nostic significance and the definition of plasma cell leukemia 
has recently been refined to include patients with at least 5% 
circulating plasma cells (69). Aging is an important adverse 
prognostic factor, and defining risk in older age requires the 
incorporation of additional information. In the elderly, clas-
sical molecular HR prognostic factors become less useful as 
their impact is less penetrant, and performance status and 
frailty become more important predictors of prognosis (70). 
The assessment of frailty and its role in guiding therapy deci-
sions is an area of active research. Information on telomere 
length and chromothripsis offers a novel way of improving 
the identification of adverse prognosis in patients over the 
age of 65 years (71). The presence of clonal hematopoiesis 
does not currently seem to add additional benefit to risk 
stratification (72). Results from ongoing studies using single-
cell techniques are aiming to incorporate signals from the 
immune environment and microenvironment into current 
staging systems (73–75).

THE SIZE OF THE HIGH-RISK PROBLEM
With current treatments it is now possible to achieve 

median PFS and OS for transplant-eligible (TE) patients of 

4 to 6 and 6 to 9+  years, respectively [IFM2009 study (76) 
VRd+ASCT (PFS median 47 months, OS at 8 years 62%), 
GRIFFIN study (77) Dara-VRd+ASCT (PFS at 2 years 96%, OS 
at 2 years >96%) and Cassiopeia study (78) Dara-VTd+ASCT 
(PFS at 18 months 93%); and for transplant-noneligible 
patients (TNE) of 2 to 5 and 5 to 7+ years, respectively (FIRST 
study (79, 80) Rd (PFS median 26 months, OS median 59 
months), MAIA study (81) D-Rd (PFS at 5 years 50%, OS at 5 
years 66%) and ALCYONE study (82) D-VMP (PFS median 36 
months, OS at 3 years 78%); Supplementary Table S1].

Only a few randomized phase III studies have com-
pared the Kaplan–Meier curves for HR and standard-risk 
subgroups within a given treatment arm. When HR out-
comes on the experimental arm are compared with similar 
patients in the control arm, many studies show improve-
ment in outcomes with the experimental arm. However, 
there still remains a group of patients with very poor clini-
cal outcomes.

With a few exceptions, most clinical trials of NDMM have 
been for “all comers” who are either transplant eligible or 
transplant noneligible. The impact of therapy on subgroups 
with variably defined HR features has predominantly been 
analyzed on the basis of post hoc analyses using the detection 
of the t(4;14), t(14;16), del(17p) or gain(1q) adverse features 
by iFISH. Although these analyses are not always statisti-
cally powered to detect a significant difference in outcome, 
they do provide information on the impact of therapy on  
this segment.

Depending on the features included in the definition of 
risk, between 6% and 30% of patients can be considered as 
HR (Supplementary Table S2). If the ISS is used alone, the 
number of patients with stage III varies from 15% to 25% 
[Myeloma XI study (83) 25%, IFM 2009 study (76) 18%, 
Cassiopea study (78) 15%, Griffin study (77) 13.5%, EMN02 
study (84) 20%]. If iFISH alone is used, HR single abnor-
malities occur at t(4;14) 15%, t(14;16) 3%, del(17p) 8% and 
gain(1q) 40%. If the R-ISS is used, then the R-ISS III group 
size is around 10% (EMN02 study 8% but 15% missing data). 
MyPRS/SKY92 HR cases occur in 10% of patients. “Double-
Hit” cases occur in 6% (4).

To estimate how single adverse prognostic factors inter-
act, data from the CoMMpass/MGP study have been ana-
lyzed (85). Using NGS and expression data, the hazard 
ratios for each of the individual risk factors in comparison 
to a standard risk segment were estimated. These data show 
that there is significant variability in the impact of individ-
ual factors. For combinations of markers, the hazard ratio 
identified showed a more significant negative impact on 
outcome than single markers. Interestingly the Double-Hit 
and GEP70 high were associated with the highest hazard 
ratio at 3.1 and 3.5, respectively, for OS.

There is little information to accurately estimate the inci-
dence rates of cases of PCL or cases with increased circulat-
ing plasma cells. Similarly, the number of cases with EMD 
at diagnosis is difficult to estimate, but is likely to be low. It 
is critical to distinguish para-medullary from true EMD, as 
lesions in the bone naturally extend outward, and if reported 
as extramedullary can result in falsely high rates of EMD. 
Numerous small studies have examined therapy in PCL and 
EMD, but it is difficult to draw definitive conclusions.
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TAILORING CURRENT THERAPEUTIC 
OPTIONS FOR HIGH-RISK DISEASE

Most treatment recommendations for patients with HR 
disease utilize data from the “all comer” studies or from single 
center series (Supplementary Table  S1; refs. 37, 86). A meta-
analysis has addressed the role of proteasome inhibitor (PI)-
based treatment as first-line therapy for patients with t(4;14) 
and del(17p). This analysis suggested a benefit for the use 
of PIs in improving the negative prognostic impact of these 
genetic variants (87). Studies have also shown that immu-
nomodulatory drugs (IMiD) are active in the HR segment (88). 
What is abundantly clear is that combining the mechanism of 
action of PIs, IMiDs, and steroids as triplet combinations leads 
to deeper responses than using a doublet in all-risk groups.

The addition of anti-CD38 mAbs to triplet and doublet 
regimens has demonstrated that immunotherapy can make a 
significant improvement in response rates, depth of response, 
PFS, and OS in NDMM, including those with HR disease 
(89). The preliminary results of ongoing risk-stratified studies 
further exploring the role of anti-CD38 mAbs are promis-
ing including the UAMS TT7 study, the German Multiple 
Myeloma group (GMMG; ref.  90) CONCEPT, and the UK 
MUK9B Optimum study (91, 92).

Several large randomized clinical trials, as well as nonrand-
omized comparisons, suggest tandem ASCT may be beneficial 
in HR disease (84). However, there remains considerable debate 
about the value of this approach, despite it being standard in 
a number of European countries. Alternative conditioning 
regimens to melphalan have also been shown to be effective 
in HR disease but are not widely used (93). The mechanistic 
basis of these associations is unclear and may simply reflect 
the importance of achieving a deep MRD-negative response.

Randomized studies have reported data on the impact of 
risk status in the maintenance setting, and have shown the 
benefit of single-agent IMiDs (lenalidomide) and PI (ixazomib) 
compared to observation irrespective of risk status [lenalido-
mide (Myeloma XI; ref. 88) hazard ratio for SR 0.38, HR 0.45, 
UHR 0.42; ixazomib (Tourmaline (94)) SR 0.65, HR 0.62]. In a 
lenalidomide meta-analysis, there were differences in the hazard 
ratios between risk groups (SR 0.48, HR 0.86; ref. 95). A recent 
study combining carfilzomib and lenalidomide in the mainte-
nance setting showed a benefit for the combination compared 
with single-agent lenalidomide across risk groups [with the 
exception of amp(1q)], with hazard ratios in a similar range 
(FORTE study KR vs. R HRs SR 0.4, HR 0.6, UHR 0.53; ref. 38).

In the HR relapsed setting, many of the above agents 
in combination as well as newly introduced agents such 
as selinexor demonstrate activity (96). Immunotherapy 
approaches are being evaluated in this setting, including anti-
BCMA antibody–drug conjugates, T-cell engaging therapies 
such as bispecific antibodies, and CAR T cells. The ability of 
these agents to induce MRD-negative responses in relapsed/
refractory myeloma (RRMM), including a substantial propor-
tion of HR/UHR cases suggests these agents have significant 
potential (97). Importantly, the impaired immune response 
in RRMM suggests these agents will be more effective in 
NDMM, where the immune system is less impaired. Another 
potential benefit of immune therapies is immunogenic cell 
death which has the potential to prime and reprogram T-cell 

responses, to generate effective antitumor immunity (98, 99). 
A note of caution, though, is raised from the results of treating 
relapsed non-Hodgkin lymphoma, where cases with TP53 loss 
and MYC over expression respond less well to novel immuno-
therapies than cases lacking these lesions. It will therefore, 
be important in multiple myeloma to evaluate outcomes for 
each individual risk strata, and to potentially determine novel 
risk factors based on the marrow immune microenvironment.

Although precision medicine offers a potential therapeutic 
strategy, a targeted approach using patient-specific genetic 
information is currently limited by a lack of appropriate 
agents. For example, no therapies are available specifically 
for t(4;14), t(14;16), or del(17p). Recent studies have shown 
excellent responses when venetoclax, a BCL2 inhibitor, is used 
at relapse for t(11;14) patients, even those with HR features 
(100–102). Studies have also shown RAS pathway inhibitors 
may be useful, although addressing individual mutations is 
hampered by the presence of intraclonal heterogeneity where 
the target is only present in a subclone (103, 104).

RECOMMENDATIONS FOR IMPROVING 
OUTCOMES IN HIGH-RISK DISEASE

To improve the outcomes for patients with HR there are a 
number of important variables that need to be systematically 
addressed (Box 2).

Optimizing Clinical Care
The treatment of HR patients in everyday clinical practice 

should be optimized by using the most appropriate treat-
ment from the current therapeutic armamentarium. Achiev-
ing MRD negativity is particularly important for HR cases 
and is crucial to the achievement of long-term outcomes. The 
widespread adoption of MRD testing in the clinic including 
mass spectrometry, flow cytometry, and molecular testing will 
enable clinicians to optimize the impact of current therapies.

Improving Diagnostics
Health care systems should accept the concept of risk-

stratification in multiple myeloma, approve reimbursement 
of novel diagnostic tests and allow drug reimbursement to 
enable a personalized approach to treatment. Testing should 
be performed on purified bone marrow plasma cells. iFISH 
panels should include translocations [t(4;14), t(14;16), and 
t(11;14)]; copy-number analysis of odd number chromosomes 
(e.g., 5,9,15,19 and 21) for the identification of hyperdiploid 
cases, as well as an assessment of gain and amplification of 
1q, deletion of 1p and 17p together with quantification of the 
number of clonal cells carrying these markers; and mutational 
analysis of TP53. Moving forward, a move from iFISH to NGS-
based diagnostic panels is anticipated. These panels will detect 
all clinically relevant prognostic variables in a single rapid 
turn-around test, and may also include other common muta-
tions that can be targeted therapeutically (100–105).

Implementing High-Risk Clinical Trials
Outstanding questions in relation to the development 

of risk-stratified trials include the definition and size of the  
HR group, and the outcome of individual risk strata. 
Addressing these questions will enable regulatory approval 

D
ow

nloaded from
 http://aacrjournals.org/bloodcancerdiscov/article-pdf/doi/10.1158/2643-3230.BC

D
-21-0205/3154614/bcd-21-0205.pdf by guest on 04 June 2022



VIEWS

 JULY  2022 BLOOD CANCER DISCOVERY | OF7 

• Health care systems should:
• recognize the importance of HRMM.
• approve reimbursement of novel diagnostic tests.
• provide appropriate reimbursement policies to enable 

personalized therapy.
• Clinical and molecular stratification should be performed 

on all NDMM.
• Testing should be performed on purified bone marrow 

plasma cells.
• Panels should include identification of:

• adverse translocations
• t(4;14), t(14;16)

• other translocations
• t(11;14)

• copy number abnormalities
• the odd number chromosomes to identify  

hyperdiploidy
• gain and amplification of 1q
• deletion of 1p

BOX 2: RECOMMENDATIONS FOR IMPROVING OUTCOMES FOR HIGH-RISK DISEASE

• deletion of 17p
• the number of clonal cells carrying these markers

• mutational analysis
• of TP53
• cancer clonal fraction with the abnormality

• Moving forward, we should move from iFISH to NGS-
based diagnostic panels that:
• detect all clinically relevant prognostic variables in a 

single rapid turn-around test.
• targetable lesions such as RAS and BRAF should be 

included in the panel design.
• Clinical care should be optimized based on risk status.

• Appropriate treatments should be chosen from the 
current therapeutic armamentarium.

• The achievement of MRD negativity should be an early 
treatment goal.

• Whenever possible, patients should enter a clinical 
trial.

• Appropriate clinical trial designs include:
• risk-stratified treatment studies

• using standard inclusion criteria.
• with phase II studies that explore highly active 

regimens.
• all-comer trials

• where randomization is stratified based on risk to 
avoid arm imbalance.

• with a planned analysis of HR patients included in 
the statistical analysis plan.

• The methodology used to define risk should be reported 
including:
• cytogenetics, iFISH, GEP, DNA panels.
• the percentage of cells positive or the cancer clonal 

fraction for specific abnormalities.

BOX 3: RECOMMENDATIONS FOR THE DESIGN OF HRMM HIGH-RISK MULTIPLE MYELOMA 
CLINICAL TRIALS

• Reporting of trials should be standardized and include:
• depth of response with

• PR, VGPR, and CR.
• MRD negativity.
• PFS and OS at set time points.

• proportion of patients reaching predetermined proto-
col time points.

• safety data.
• Biological samples

• should be collected in all studies.
• aim to further understand the biology of HR.
• should refine:

• current risk markers.
• novel risk makers.
• novel targets for therapy.

• Data should be shared with the community.

and reimbursement for HR therapies in a group where entry 
criteria, definitions, diagnostic methods, and reporting are 
standardized and reproducible (Box 3).

There are two general approaches to evaluating the impact 
of therapies on HR disease. In the most widely used approach 
the treatment of HR disease is not the primary focus of study, 
with the analysis of risk segments being carried out post hoc. If 
HR cases are included in standard-risk trials, the randomiza-
tion should be stratified to avoid imbalance of the treatment 
arms, and a planned analysis of the HR patients should be 
included in the statistical analysis plan.

The second approach specifically sets out to evaluate the 
outcome of HR patients as part of the study design. A key 
design feature of such studies is that they can be smaller 
and have a shorter median follow-up, offering a platform to 
explore novel therapeutic hypotheses. Furthermore, given 
that clinical trials have already been carried out in HR seg-
ments and their relative resistance to current therapies is 
known, it is ethically appropriate to test novel therapies 
in these patients. Such approaches recognize the balance 
between improvements in outcome on one side, and the 
potential for a greater level of side effects on the other.
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Risk-Stratified Trial Design
Data from HR patients treated in previous “all-comer” 

studies can be used to guide the design of future risk-stratified 
phase II/III studies, particularly in respect to the quantifica-
tion of study size and the choice of appropriate control arms 
for randomized studies. Currently, defining control therapies 
is difficult because of the very poor outcome in UHR where 
a standard treatment approach is not yet defined. Previously 
used regimens in HR studies include combinations of chemo-
therapy, immunotherapy, and ASCT such as those used in the 
TT studies, or the SWOG study, which compared VRD versus 
VRD-elotuzumab (106). The SWOG study, however, found no 
difference in outcome between the arms. Thus, at this stage, 
single-arm phase II studies may be an appropriate approach 
to optimize therapy before moving into randomized phase II  
or III studies. Such phase II studies should have standard-
ized inclusion criteria to enable a comparison of new clinical 
trial results with historical datasets. Current phase II studies 
are exploring both induction and postinduction therapeutic 
strategies aimed at improving remission depth and duration 
(e.g., anti-CD38 in combination with PI, IMiD, and trans-
plant, followed by dual therapy maintenance). Importantly, 
when novel therapies active in RRMM are identified, they 
should be rapidly evaluated in ND HRMM.

Given the aggressive nature of HRMM and the inherent 
delays in obtaining genetic data before being able to risk-strat-
ify and start specific therapy, it is acceptable to allow patients to 
receive up to 2 to 3 prior cycles of standard induction therapy 
before entry into a risk-stratified study. This approach enables 
therapy to be initiated and an attempt at early disease control 
to be made whilst risk assessments are being carried out.

Clinical Trial Reporting
The size and outcome of the HR group is dependent on 

the criteria used for its identification. While still the subject 
of ongoing refinement, there are now an agreed set of cytoge-
netic, iFISH, mutational, and expression-based markers that 
can be used to select patients for trials (Box 2). Although 
it is important to be inclusive of methodologies to enable 
good clinical trial recruitment, it is imperative to report 
these methods as part of the trial publication including the 
diagnostic test used for risk stratification (e.g., cytogenetics, 
iFISH, GEP, DNA panels), the frequency of each variable, 
and the number of cells positive for each specific abnormal-
ity. This will ensure that trial results can be compared; and 
as more data becomes available, that risk assignment can 
be refined. As the variables used to define risk cosegregate, 
it is essential that the results of all the critical variables are 
reported to appropriately attribute risk.

A number of other factors are important to collect and 
report systematically including the percentage and number 
of circulating plasma cells, the organ involved by EMD and 
for relapsed cases the previous best response to therapy (if 
any), and length of first response to therapy. For therapies tar-
geting specific genes/proteins, information on copy number 
by FISH or inferred from sequencing data at the same gene 
locus should be collected. For example, for immune strate-
gies targeting B-cell maturation antigen (BCMA) the copy 
number and mutational status of 16p at the BCMA locus, 

TNFRSF17, needs to be assessed, as acquired deletions and 
mutations have already been identified that are associated 
with treatment resistance (107, 108).

Clinical End Points
For HRMM, the traditional clinical trial efficacy endpoints 

of PFS and OS remain appropriate and are often reached after 
a relatively short median follow-up. However, the reporting of 
these features needs to standardized to include survival rates 
at 1 year, 3 years, 5 years, and median values when reached, so 
that results can be compared between studies (Supplemen-
tary Table  S1). The reporting of response rates also needs 
to be standardized as currently studies vary in what type of 
response is reported (e.g., whether MRD, CR, VGPR, and PR 
are reported) and the timing when such responses are noted 
(e.g., postinduction, posttransplant, during maintenance), 
This is highlighted in Supplementary Table S1, where >VGPR 
rates vary between 80% and 90%, stringent CR rates between 
19% and 30% and MRD negativity rates between 20% and 
65% depending on time of reporting. It is important to 
assess MRD at early time points, using a continuous scale of 
response depth and sensitivity threshold; although it is not 
used currently to change therapy, such data will be useful to 
design and guide statistical considerations for future studies.

Other important endpoints include safety data, the ability to 
reach each protocol-defined treatment stage, the early relapse 
rate (e.g., at 3, 6, 9, and 12 months), and time to next treatment.

Linking Outcome Data to Disease Biology
It is essential to further understand the biology of HR 

disease if we are to recognize and treat it effectively. Clinical 
studies should include standardized timing of sample col-
lection and the analysis of the material collected, so that the 
impact of therapy on the individual segments contributing 
to HR disease can be determined. With the increasing use of 
immunotherapy, translational studies should include stud-
ies of the HR microenvironment as well as the clonal tumor 
cells. Such studies will enable the confirmation and refine-
ment of current markers as well as the identification of novel 
makers. Analysis of datasets from large clinical trials will also 
ascertain the most appropriate diagnostic technology and a 
standardized testing policy going forward.

CONCLUSIONS
Despite recent treatment advances, patients with HRMM 

continue to have poor clinical outcomes. With the promise of 
new therapeutic approaches, it is no longer appropriate to just 
describe this poor outcome; rather, it is critical that therapy 
be optimized via a clinical trial strategy. The implementation 
of such an approach will require collaboration between physi-
cians, study groups, pharmaceutical partners, patient groups, 
trial sponsors and regulatory organizations. This article rep-
resents a first step in this process, with the long-term aim to 
achieve stepwise improvements in outcome comparable to the 
improvements that have taken place in standard-risk disease.
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